Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows

Hu Jia-Yi Zhang Wen-Huan Chai Zhen-Hua Shi Bao-Chang Wang Yi-Hang

Citation:

Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows

Hu Jia-Yi, Zhang Wen-Huan, Chai Zhen-Hua, Shi Bao-Chang, Wang Yi-Hang
PDF
HTML
Get Citation
  • In order to improve the computational efficiency of multiple-relaxation-time lattice Boltzmann model (MRT), a 12-velocity multiple-relaxation-time lattice Boltzmann model (iD3Q12 MRT model) for three-dimensional incompressible flows is proposed in this work by using an inversion method. This model has higher computational efficiency than the commonly used D3Q13 MRT model in principle. In numerical simulations, the accuracy and stability of iD3Q12 MRT model are validated by simulating different flows, including steady Poiseuille flow driven by pressure, unsteady pulsatile flow driven by periodic pressure and lid-driven cavity flow. We also compare the iD3Q12 MRT model with the 13-velocity multiple-relaxation-time lattice Boltzmann model(He-Luo D3Q13 MRT model).For the Poiseuille flow and pulsatile flow, the numerical solutions of the iD3Q12 MRT model agree well with the analytical solutions. In terms of accuracy, the iD3Q12 MRT model and He-Luo D3Q13 MRT model are used to simulate Poiseuille flow with different parameters. The global relative errors of the two models are identical. Similarly, we also simulate the pulsatile flow to calculate the global relative errors of flow fields at different times and different lattice spacing. It is found that the global relative errors of the iD3Q12 MRT model are smaller than those of the He-Luo D3Q13 MRT model, and both models have the second-order spatial accuracy. Furthermore, we also simulate the pulsatile flow by changing the lattice spacing or relaxation time when the maximal pressure drop of the channel is increased, and it is found that the global relative errors calculated by the iD3Q12 MRT model are smaller than those by the He-Luo D3Q13 MRT model in most cases, but the iD3Q12 MRT model diverges when the maximal pressure drop of the channel is large. This indicates that the iD3Q12 MRT model is more accurate than the He-Luo D3Q13 MRT model in simulating unsteady pulsatile flow, but less stable. For the lid-driven cavity flow, the results show that the numerical results of the iD3Q12 MRT model agree well with those given by Ku et al [Ku H C, Hirsh R S, Taylor T D 1987 J. Comput. Phys. 70 439]. In terms of stability, the iD3Q12 MRT model is quantitatively less stable than He-Luo D3Q13 MRT model.
      Corresponding author: Zhang Wen-Huan, zhangwenhuan@nbu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ16A020001), the Scientific Research Foundation of the Education Department of Zhejiang Province, China (Grant No. Y201533808), the Natural Science Foundation of Ningbo, China (Grant No. 2016A610075), and the K.C. Wong Magna Fund in Ningbo University, China.
    [1]

    McNamara G R, Zanetti G 1988 Phys. Rev. Lett. 61 2332Google Scholar

    [2]

    Higuera F, Jimenez J 1989 Europhys. Lett. 9 663Google Scholar

    [3]

    Higuera F, Succi S S, Benzi R 1989 Europhys. Lett. 9 345Google Scholar

    [4]

    Abe T 1997 J. Comput. Phys. 131 241Google Scholar

    [5]

    He X Y, Luo L S 1997 Phys. Rev. E 56 6811Google Scholar

    [6]

    Shan X W, He X Y 1998 Phys. Rev. Lett. 80 65Google Scholar

    [7]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [8]

    张良奇 2014 博士学位论文 (重庆: 重庆大学)

    Zhang L Q 2014 Ph. D. Dissertation (Chongqing: Chongqing University)

    [9]

    He X Y, Shan X W, Doolen G D 1998 Phys. Rev. E 57 R13

    [10]

    Qi D W 1999 J. Fluid. Mech. 385 41Google Scholar

    [11]

    Chen S Y, Chen H D, Martínez D, Matthaeus W 1991 Phys. Rev. Lett. 67 3776Google Scholar

    [12]

    Chen X W, Shi B C 2005 Chin. Phys. Soc. 14 1398Google Scholar

    [13]

    Zhang T, Shi B C, Chai Z H 2015 物理学报 64 154701Google Scholar

    Pan C X, Luo L S, Miller C T 2015 Acta Phys. Sin. 64 154701Google Scholar

    [14]

    Velivelli A C, Bryden K M 2006 Physica A 362 139Google Scholar

    [15]

    Ginzburge I 2005 Adv. Water Resour. 28 1171Google Scholar

    [16]

    Chai Z H, Shi B C, Guo Z L 2016 J. Sci. Comput. 69 355Google Scholar

    [17]

    Chai Z H, Shi B C 2008 Appl. Math. Model. 32 2050Google Scholar

    [18]

    Du R, Sun D K, Shi B C, Chai Z H 2019 Appl. Math. Comput. 358 80

    [19]

    Bhatnagar J, Gross E P, Krook M K 1954 Phys. Rev. 94 511Google Scholar

    [20]

    Qian Y, d'Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [21]

    He X Y, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [22]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288Google Scholar

    [23]

    He N Z, Wang N C, Shi B C, Guo Z L 2004 Chin. Phys. Soc. 13 0040Google Scholar

    [24]

    Ansumali S, Karlin I V, Ottinger H C 2003 Europhys. Lett. 63 798Google Scholar

    [25]

    Ginzburg I, Verhaeghe F, d'Humières D 2008 Commun. Comput. Phys. 3 427

    [26]

    Ginzburg I, Verhaeghe F, d'Humières D 2008 Commun. Comput. Phys. 3 519

    [27]

    d'Humières D 1992 AIAA J. 159 450

    [28]

    d'Humières D 2002 Phil. Trans. R. Soc. Lond. A 360 437Google Scholar

    [29]

    d'Humières D, Bouzidi M'hamed, Lallemand P 2001 Phys. Rev. E 63 066702Google Scholar

    [30]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546Google Scholar

    [31]

    Du R, Shi B C, Chen X W 2006 Phys. Lett. A 359 564Google Scholar

    [32]

    Du R, Shi B C 2009 Int. J. Mod. Phys. C 20 1023Google Scholar

    [33]

    Zhang W H, Shi B C, Wang Y H 2015 Comput. Math. Appl. 69 997Google Scholar

    [34]

    Suga K, Kuwata Y, Takashima K, Chikasue R 2015 Comput. Math. Appl. 69 518Google Scholar

    [35]

    Luo L S, Liao W, Chen X W, Peng Y, Zhang W 2011 Phys. Rev. E 83 056710Google Scholar

    [36]

    Kang S K, Hassan Y A 2013 J. Comput. Phys. 232 100Google Scholar

    [37]

    Peng C, Nicholas G, Guo Z L, Wang L P 2018 J. Comput. Phys. 357 16Google Scholar

    [38]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [39]

    White F M 2005 Viscous Fluid Flow (3rd Ed.) (New York: McGraw-Hill) p135

    [40]

    O'Brien V 1975 J. Franklin I. 300 225Google Scholar

    [41]

    Ku H C, Hirsh R S, Taylor T D 1987 J. Comput. Phys. 70 439Google Scholar

  • 图 1  三维泊肃叶流示意图

    Figure 1.  The schematic of three-dimensional Poiseuille flow.

    图 2  泊肃叶流数值解与解析解的对比 (a) 泊肃叶流在$x=1$截面处z取不同的值时水平速度$u_{x}$y变化的函数图像; (b) 在截面$z=0$y取不同的值时压力px变化的函数图像; 直线: 解析解; 符号: 数值解; 松弛因子$\lambda_{\nu}=1.3$

    Figure 2.  Comparison between numerical and analytical solutions of Poiseuille flow: (a) The variation of $u_{x}$ with y for different locations of z at section $x=1$ for Poiseuille flow; (b) the variation of pressure with x for different locations of y at section $z=0$ for Poiseuille flow. Lines, analytical solutions; symbols, numerical results; the relaxation parameter ${\lambda}_{\nu}=1.3$.

    图 3  不同的$\lambda_{\nu}$下, 模拟泊肃叶流得到的速度场的全局相对误差${\rm {GRE}}_u$随空间步长$\text{δ}{x}$的变化, 符号代表数值解, 连线表示拟合直线

    Figure 3.  The variation of ${\rm {GRE}}_u$ of velocity field with the lattice spacing $\text{δ}{x}$ at different $\lambda_{\nu}$ for Poiseuille flow. Symbols represent numerical solutions, lines represent fitting line.

    图 4  $\eta=2.8285$时脉动流在$x=1$, $z=0$处水平速度uxy变化的函数. 直线: 解析解; 符号: 数值解

    Figure 4.  The variation of horizontal velocity ux with y for pulsatile flow at the location $x=1$, $z=0$, $\eta=2.8285$. Line, analytical solutions; symbols, numerical solutions.

    图 5  同一周期四个不同时刻下变量${\rm {GRE}}_u$随空间步长$\text{δ}{x}$的变化

    Figure 5.  The variation of ${\rm {GRE}}_u$ with the lattice spacing at four different times in a period for pulsatile flow.

    图 6  三维顶盖驱动的方腔流示意图

    Figure 6.  The schematic of three-dimensional lid-driven cavity flow

    图 7  不同的雷诺数下模拟方腔流, 在截面$z=0.5$处竖直和水平中心线的速度分布 (a) Re = 100; (b) $Re=400$; (c) $Re=1000$

    Figure 7.  The velocity distribution in the vertical and horizontal center lines at section $z=0.5$ for cavity flows at different $Re$: (a) $Re=100$; (b) $Re=400$; (c) $Re=1000$.

    表 1  iD3Q12 MRT和D3Q13 MRT模型在不同松弛因子${\lambda}_{\nu}$和不同空间步长下计算得到的泊肃叶流的速度场的全局相对误差${\rm GRE}_u$

    Table 1.  The ${\rm GRE}_u$ of velocity field for Poiseuille flow computed by iD3Q12 MRT and D3Q13 MRT models under different relaxation parameters and different lattice spacings.

    ${\rm GRE}_u$Lattice spacing $\text{δ} x$Model
    1/81/161/321/64
    ${\lambda}_{\nu}=0.8,$ ${\lambda}'_{\nu}=1.143$$3.090\times10^{-2}$$7.700\times10^{-3}$$1.900\times10^{-3}$$4.623\times10^{-4}$iD3Q12 MRT
    $3.090\times10^{-2}$$7.700\times10^{-3}$$1.900\times10^{-3}$$4.623\times10^{-4}$D3Q13 MRT
    ${\lambda}_{\nu}=1.0,$ ${\lambda}'_{\nu}=1.333$$5.990\times10^{-2}$$1.660\times10^{-2}$$4.400\times10^{-3}$$1.100\times10^{-3}$iD3Q12 MRT
    $5.990\times10^{-2}$$1.660\times10^{-2}$$4.400\times10^{-3}$$1.100\times10^{-3}$D3Q13 MRT
    ${\lambda}_{\nu}=1.3,$ ${\lambda}'_{\nu}=1.576$$8.720\times10^{-2}$$2.500\times10^{-2}$$6.700\times10^{-3}$$1.700\times10^{-3}$iD3Q12 MRT
    $8.720\times10^{-2}$$2.500\times10^{-2}$$6.700\times10^{-3}$$1.700\times10^{-3}$D3Q13 MRT
    DownLoad: CSV

    表 2  $\eta=2.8285$时, 不同空间步长下用iD3Q12 MRT模型和D3Q13 MRT模型模拟脉动流所得的不同时刻下的速度场的全局相对误差${\rm GRE}_u$

    Table 2.  The global relative errors of the velocity field at different times for pulsatile flow simulated by iD3Q12 MRT and D3Q13 MRT models at different lattice spacings, $\eta=2.8285$.

    Lattice spacing${\rm GRE}_u$Model
    $T/4$$T/2$$3 T/4$T
    ${\rm{\text{δ}} } x= {1}/{20}$$1.483\times10^{-2}$$4.214\times10^{-2}$$1.805\times10^{-2}$$4.028\times10^{-2}$iD3Q12 MRT
    $1.662\times10^{-2}$$4.733\times10^{-2}$$2.118\times10^{-2}$$4.299\times10^{-2}$D3Q13 MRT
    ${\rm{\text{δ}} } x= {1}/{40}$$3.803\times10^{-3}$$1.199\times10^{-2}$$4.651\times10^{-3}$$1.153\times10^{-2}$iD3Q12 MRT
    $4.172\times10^{-3}$$1.324\times10^{-2}$$5.398\times10^{-3}$$1.217\times10^{-2}$D3Q13 MRT
    ${\rm{\text{δ}} } x= {1}/{60}$$1.702\times10^{-3}$$5.569\times10^{-3}$$2.085\times10^{-3}$$5.369\times10^{-3}$iD3Q12 MRT
    $1.855\times10^{-3}$$6.116\times10^{-3}$$2.412\times10^{-3}$$5.648\times10^{-3}$D3Q13 MRT
    ${\rm{\text{δ}} } x= {1}/{80}$$9.605\times10^{-4}$$3.204\times10^{-3}$$1.177\times10^{-3}$$3.092\times10^{-3}$iD3Q12 MRT
    $1.043\times10^{-3}$$3.509\times10^{-3}$$1.360\times10^{-3}$$3.247\times10^{-3}$D3Q13 MRT
    DownLoad: CSV

    表 3  相邻空间步长下的iD3Q12 MRT和D3Q13 MRT模型的空间精度的阶

    Table 3.  The orders of the spatial accuracy of iD3Q12 MRT and D3Q13 MRT models under adjacent spacings.

    Adjacent spacingOrderModel
    $T/4$$T/2$$3 T/4$T
    Average1.9781.8751.9741.869iD3Q12 MRT
    1.9981.8911.9841.879D3Q13 MRT
    ${1}/{20} \to {1}/{40}$1.9631.8131.9561.805iD3Q12 MRT
    1.9941.8381.9721.821D3Q13 MRT
    ${1}/{40}\to {1}/{60}$1.9831.8911.9791.885iD3Q12 MRT
    1.9991.9051.9871.893D3Q13 MRT
    ${1}/{60} \to {1}/{80}$1.9891.9221.9881.918iD3Q12 MRT
    2.0011.9311.9921.924D3Q13 MRT
    DownLoad: CSV

    表 4  $\tau=0.5667$, $\eta=4.3416$, 最大压差$\Delta{p}$增大时不同的空间步长下由iD3Q12 MRT和D3Q13 MRT模型模拟的脉动流在时刻T下的速度场所计算的全局相对误差${\rm GRE}_u$, 空白处表示计算发散

    Table 4.  The global relative error calculated by the velocity field at time T of pulsatile flow simulated by the iD3Q12 MRT and D3Q13 MRT models under different lattice spacings. The maximal pressure drop $ \Delta{p} $ of the channel increases, $\tau=0.5567$, $\eta=4.3416$ are fixed. The blank indicates that the computation is divergent.

    $ \Delta p $Lattice spacing ${\rm{\text{δ}} } x$Model
    1/201/401/601/80
    $0.005 $$9.919\times10^{-2}$$3.030\times10^{-2}$$1.442\times10^{-2}$$8.402\times10^{-3}$iD3Q12 MRT
    $1.121\times10^{-1}$$3.326\times10^{-2}$$1.568\times10^{-2}$$9.084\times10^{-3}$D3Q13 MRT
    $0.010$$1.172\times10^{-1}$$3.445\times10^{-2}$$1.618\times10^{-2}$$9.362\times10^{-3}$iD3Q12 MRT
    $1.679\times10^{-1}$$4.763\times10^{-2}$$2.199\times10^{-2}$$1.260\times10^{-2}$D3Q13 MRT
    $0.020$$1.777\times10^{-1}$$5.110\times10^{-2}$$2.365\times10^{-2}$$1.355\times10^{-2}$iD3Q12 MRT
    $2.940\times10^{-1}$$8.630\times10^{-2}$$3.987\times10^{-2}$$2.279\times10^{-2}$D3Q13 MRT
    $0.050$$1.243\times10^{-1}$$5.848\times10^{-2}$$3.386\times10^{-2}$iD3Q12 MRT
    $2.025\times10^{-1}$$9.868\times10^{-2}$$5.757\times10^{-2}$D3Q13 MRT
    $0.080$$6.073\times10^{-2}$iD3Q12 MRT
    $1.575\times10^{-2}$$9.405\times10^{-2}$D3Q13 MRT
    $0.100$iD3Q12 MRT
    $1.192\times10^{-1}$D3Q13 MRT
    $0.120$iD3Q12 MRT
    $1.454\times10^{-1}$D3Q13 MRT
    DownLoad: CSV

    表 5  ${\rm{\text{δ}}} {x}={1}/{20}$时, 最大压差$\Delta{p}$增大时不同的松弛时间τ下由iD3Q12 MRT和D3Q13 MRT模型模拟的脉动流由T时刻的速度场计算得出的全局相对误差${\rm GRE}_u$, 空白处表示计算发散

    Table 5.  The global relative error of the velocity field at time T of the pulsatile flow simulated by the iD3Q12 MRT and D3Q13 MRT models under different relaxation time τ. The maximal pressure drop of the channel is increased and ${\rm{\text{δ}}}{x}={1}/{20}$ is fixed. The blank indicates that the computation is divergent.

    $\Delta p$τModel
    0.550.600.700.90
    $0.005 $$1.302\times10^{-1}$$6.311\times10^{-2}$$2.955\times10^{-2}$$1.744\times10^{-2}$iD3Q12 MRT
    $1.556\times10^{-1}$$6.560\times10^{-3}$$3.023\times10^{-2}$$1.993\times10^{-2}$D3Q13 MRT
    $0.010$$1.612\times10^{-1}$$6.830\times10^{-2}$$2.711\times10^{-2}$$1.736\times10^{-2}$iD3Q12 MRT
    $2.435\times10^{-1}$$8.735\times10^{-2}$$2.661\times10^{-2}$$2.058\times10^{-2}$D3Q13 MRT
    $0.020$$2.475\times10^{-1}$$9.926\times10^{-2}$$2.624\times10^{-2}$$1.656\times10^{-2}$iD3Q12 MRT
    $4.182\times10^{-1}$$1.542\times10^{-1}$$2.757\times10^{-2}$$2.195\times10^{-2}$D3Q13 MRT
    $0.030$$1.430\times10^{-1}$$3.421\times10^{-2}$$1.509\times10^{-2}$iD3Q12 MRT
    $5.482\times10^{-1}$$2.193\times10^{-1}$$3.616\times10^{-2}$$2.343\times10^{-2}$D3Q13 MRT
    $0.040$$5.001\times10^{-2}$$1.349\times10^{-2}$iD3Q12 MRT
    $4.693\times10^{-2}$$2.502\times10^{-2}$D3Q13 MRT
    $0.050$$1.291\times10^{-2}$iD3Q12 MRT
    $2.674\times10^{-2}$D3Q13 MRT
    DownLoad: CSV

    表 6  不断增大雷诺数比较iD3Q12 MRT和He-Luo D3Q13 MRT模型在模拟方腔流时的稳定性. $\checkmark$代表收敛, 收敛准则是(39)式

    Table 6.  Comparing the stability of iD3Q12 MRT and He-Luo D3Q13 MRT models for three-dimensional cavity flows when the Reynolds number is continuously increased. The tick represents convergence, the convergence criterion is formula (39).

    ReModel
    iD3Q12 MRTHe-Luo D3Q13 MRT
    100$\checkmark$$\checkmark$
    400$\checkmark$$\checkmark$
    1000$\checkmark$$\checkmark$
    1500$\checkmark$$\checkmark$
    1600$\checkmark$$\checkmark$
    1700divergent$\checkmark$
    1800divergentdivergent
    DownLoad: CSV
  • [1]

    McNamara G R, Zanetti G 1988 Phys. Rev. Lett. 61 2332Google Scholar

    [2]

    Higuera F, Jimenez J 1989 Europhys. Lett. 9 663Google Scholar

    [3]

    Higuera F, Succi S S, Benzi R 1989 Europhys. Lett. 9 345Google Scholar

    [4]

    Abe T 1997 J. Comput. Phys. 131 241Google Scholar

    [5]

    He X Y, Luo L S 1997 Phys. Rev. E 56 6811Google Scholar

    [6]

    Shan X W, He X Y 1998 Phys. Rev. Lett. 80 65Google Scholar

    [7]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [8]

    张良奇 2014 博士学位论文 (重庆: 重庆大学)

    Zhang L Q 2014 Ph. D. Dissertation (Chongqing: Chongqing University)

    [9]

    He X Y, Shan X W, Doolen G D 1998 Phys. Rev. E 57 R13

    [10]

    Qi D W 1999 J. Fluid. Mech. 385 41Google Scholar

    [11]

    Chen S Y, Chen H D, Martínez D, Matthaeus W 1991 Phys. Rev. Lett. 67 3776Google Scholar

    [12]

    Chen X W, Shi B C 2005 Chin. Phys. Soc. 14 1398Google Scholar

    [13]

    Zhang T, Shi B C, Chai Z H 2015 物理学报 64 154701Google Scholar

    Pan C X, Luo L S, Miller C T 2015 Acta Phys. Sin. 64 154701Google Scholar

    [14]

    Velivelli A C, Bryden K M 2006 Physica A 362 139Google Scholar

    [15]

    Ginzburge I 2005 Adv. Water Resour. 28 1171Google Scholar

    [16]

    Chai Z H, Shi B C, Guo Z L 2016 J. Sci. Comput. 69 355Google Scholar

    [17]

    Chai Z H, Shi B C 2008 Appl. Math. Model. 32 2050Google Scholar

    [18]

    Du R, Sun D K, Shi B C, Chai Z H 2019 Appl. Math. Comput. 358 80

    [19]

    Bhatnagar J, Gross E P, Krook M K 1954 Phys. Rev. 94 511Google Scholar

    [20]

    Qian Y, d'Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [21]

    He X Y, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [22]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288Google Scholar

    [23]

    He N Z, Wang N C, Shi B C, Guo Z L 2004 Chin. Phys. Soc. 13 0040Google Scholar

    [24]

    Ansumali S, Karlin I V, Ottinger H C 2003 Europhys. Lett. 63 798Google Scholar

    [25]

    Ginzburg I, Verhaeghe F, d'Humières D 2008 Commun. Comput. Phys. 3 427

    [26]

    Ginzburg I, Verhaeghe F, d'Humières D 2008 Commun. Comput. Phys. 3 519

    [27]

    d'Humières D 1992 AIAA J. 159 450

    [28]

    d'Humières D 2002 Phil. Trans. R. Soc. Lond. A 360 437Google Scholar

    [29]

    d'Humières D, Bouzidi M'hamed, Lallemand P 2001 Phys. Rev. E 63 066702Google Scholar

    [30]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546Google Scholar

    [31]

    Du R, Shi B C, Chen X W 2006 Phys. Lett. A 359 564Google Scholar

    [32]

    Du R, Shi B C 2009 Int. J. Mod. Phys. C 20 1023Google Scholar

    [33]

    Zhang W H, Shi B C, Wang Y H 2015 Comput. Math. Appl. 69 997Google Scholar

    [34]

    Suga K, Kuwata Y, Takashima K, Chikasue R 2015 Comput. Math. Appl. 69 518Google Scholar

    [35]

    Luo L S, Liao W, Chen X W, Peng Y, Zhang W 2011 Phys. Rev. E 83 056710Google Scholar

    [36]

    Kang S K, Hassan Y A 2013 J. Comput. Phys. 232 100Google Scholar

    [37]

    Peng C, Nicholas G, Guo Z L, Wang L P 2018 J. Comput. Phys. 357 16Google Scholar

    [38]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [39]

    White F M 2005 Viscous Fluid Flow (3rd Ed.) (New York: McGraw-Hill) p135

    [40]

    O'Brien V 1975 J. Franklin I. 300 225Google Scholar

    [41]

    Ku H C, Hirsh R S, Taylor T D 1987 J. Comput. Phys. 70 439Google Scholar

  • [1] Lai Yao-Yao, Chen Xin-Meng, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann method based feedback control approach for pinned spiral waves. Acta Physica Sinica, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] Liu Cheng, Liang Hong. Axisymmetric lattice Boltzmann model for three-phase fluids and its application to the Rayleigh-Plateau instability. Acta Physica Sinica, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [3] Chen Bai-Hui, Shi Bao-Chang, Wang Lei, Chai Zhen-Hua. GPU based lattice Boltzmann simulation and analysis of two-dimensional trapezoidal cavity flow. Acta Physica Sinica, 2023, 72(15): 154701. doi: 10.7498/aps.72.20230430
    [4] Ma Cong, Liu Bin, Liang Hong. Lattice Boltzmann simulation of three-dimensional fluid interfacial instability coupled with surface tension. Acta Physica Sinica, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [5] Chen Xiao-Peng, Feng Jun-Peng, Hu Hai-Bao, Du Peng, Wang Ti-Kang. Lattice Boltzmann method based simulation of two dimensional bubble group ripening process. Acta Physica Sinica, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [6] Lattice Boltzmann Simulation on Two Dimensional Vapour Bubble Ripening. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20212183
    [7] Zhang Heng, Ren Feng, Hu Hai-Bao. Transitions of power-law fluids in two-dimensional lid-driven cavity flow using lattice Boltzmann method. Acta Physica Sinica, 2021, 70(18): 184703. doi: 10.7498/aps.70.20210451
    [8] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [9] Wang Zuo, Zhang Jia-Zhong, Wang Heng. Non-orthogonal multiple-relaxation-time lattice Boltzmann method for axisymmetric thermal flows. Acta Physica Sinica, 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [10] Xie Wen-Jun, Teng Peng-Fei. Study of acoustic levitation by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [11] Tao Shi, Wang Liang, Guo Zhao-Li. Lattice Boltzmann modeling of microscale oscillating Couette flow. Acta Physica Sinica, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [12] Shi Dong-Yan, Wang Zhi-Kai, Zhang A-Man. A novel lattice Boltzmann method for dealing with arbitrarily complex fluid-solid boundaries. Acta Physica Sinica, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] Su Jin, Ouyang Jie, Wang Xiao-Dong. Lattice Boltzmann method for an advective transport equation coupled with incompressible flow field. Acta Physica Sinica, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [15] Jiang Fang-Ming, Liao Quan, Zeng Jian-Bang, Li Long-Jian. Simulation of bubble growth process in pool boilingusing lattice Boltzmann method. Acta Physica Sinica, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [16] Zeng Jian-Bang, Li Long-Jian, Liao Quan, Chen Qing-Hua, Cui Wen-Zhi, Pan Liang-Ming. Application of lattice Boltzmann method to phase transition process. Acta Physica Sinica, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [17] Zhang Xin-Ming, Zhou Chao-Ying, Islam Shams, Liu Jia-Qi. Three-dimensional cavitation simulation using lattice Boltzmann method. Acta Physica Sinica, 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [18] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [19] LI HUA-BING, HUANG PING-HUA, LIU MU-REN, KONG LING-JIANG. SIMULATION OF THE MKDV EQUATION WITH LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [20] Lü XIAO-YANG, LI HUA-BING. SIMULATION OF THERMAL VISCOUS CAVITY FLOW IN HIGH REYNOLD NUMBER BY THE LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
Metrics
  • Abstract views:  9763
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2019
  • Accepted Date:  14 September 2019
  • Available Online:  27 November 2019
  • Published Online:  05 December 2019

/

返回文章
返回