Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mixing characteristics of ellipsoidal granular materials in horizontal rotating drum based on analysis by discrete element method

Wang Si-Qiang Ji Shun-Ying

Citation:

Mixing characteristics of ellipsoidal granular materials in horizontal rotating drum based on analysis by discrete element method

Wang Si-Qiang, Ji Shun-Ying
PDF
HTML
Get Citation
  • Granular flow in the drum widely appears in the fields of industrial production, and discrete element method (DEM) proves to be a critical tool for studying the flow characteristics of granular materials. Considering simple contact and efficient calculations, the three-dimensional spheres are originally adopted by the DEM. Therefore, the DEM simulations mainly focus on spherical particles, while the dynamics of non-spherical particles in rotating drums is relatively rarely studied. It is reported that particle shape significantly affects the macroscopic and microscopic properties of the granular flow. Compared with spherical particles, non-spherical particles have low fluidity and great interlock. Meanwhile, it is questionable whether conclusions drawn from spherical particle systems can be transplanted to non-spherical particle systems. In this work, super-quadric equations based on continuous function representation are used to describe the spherical and ellipsoidal particles. Considering the complex contact detection between particles, the Newton iteration algorithm is used to solve the non-linear equations. Meanwhile, a non-linear contact model considering the equivalent radius of curvature at the local contact point is used to calculate the contact force between the super-quadric elements.To examine the validity of DEM model, we compare our simulated results with the previous experimental results for mixing process of ellipsoids, and this method is verified by good agreement between the simulated results and the experimental results. According to the aforementioned method, the influences of rotating speed, fill level, and aspect ratio on the mixing rate are discussed. The results show that the granular system reaches the cascading regime and the S-shaped surface of the granular bed is observed. In addition, Lacey mixing index is used to quantify the mixing of granular systems, and the mixing rate is obtained by fitting the Lacey mixing index. The mixing rate increases as the rotating speed increases. At the same rotating speed, the mixing rate of ellipsoids is faster than that of spheres. Meanwhile, the ellipsoidal particles have the fastest mixing rate when the aspect ratio is 0.75 or 1.50. When the aspect ratio is less than 0.75, the mixing ratio increases as the aspect ratio increases; when the aspect ratio is greater than 1.50, the mixing ratio decreases as the aspect ratio increases. Moreover, more pronounced velocity stratification is observed for ellipsoids. The translational kinetic energy of ellipsoidal particles is higher than that of spherical particles, and their rotational kinetic energy is lower than that of spheres. The aspect ratio of particles can adjust the contact mode between particles and cause the interlock. It means that the relative rotation between particles is limited and the efficiency of the external energy transferring to the non-spherical system may be improved.
      Corresponding author: Ji Shun-Ying, jisy@dlut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0605902) and the National Natural Science Foundation of China (Grant No. 11772085)
    [1]

    Gioia G, Ott-Monsivais S E, Hill K M 2006 Phys. Rev. Lett. 96 138001Google Scholar

    [2]

    Emilien A, Farhang R 2014 Phys. Rev. Lett. 112 078001Google Scholar

    [3]

    Jaeger H M, Nagel S R 1992 Science 255 1523Google Scholar

    [4]

    季顺迎, 孙其诚, 严颖 2011 中国科学: 物理学 力学 天文学 41 1112

    Ji S Y, Sun Q C, Yan Y 2011 Sci. Sin-Phys. Mech. Astron. 41 1112

    [5]

    黄德财, 孙刚, 厚美瑛, 陆坤权 2006 物理学报 55 4754Google Scholar

    Huang D C, Sun G, Hou M Y, Lu K Q 2006 Acta Phys. Sin. 55 4754Google Scholar

    [6]

    彭政, 蒋亦民, 刘锐, 厚美瑛 2013 物理学报 62 024502Google Scholar

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502Google Scholar

    [7]

    孙其诚, 王光谦 2008 物理学报 57 4667Google Scholar

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667Google Scholar

    [8]

    夏建新, 吉祖稳, 毛旭锋, 曹华德 2013 科学通报 58 1200

    Xia J X, Ji Z W, Mao X F, Cao H D 2013 Chin. Sci. Bull. 58 1200

    [9]

    刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲 2015 物理学报 64 114501Google Scholar

    Liu Y, Han Y L, Jia F G, Yao L N, Wang H, Shi Y F 2015 Acta Phys. Sin. 64 114501Google Scholar

    [10]

    陈泉, 杨晖, 李然, 韩韧, 孙其诚 2019 中国科学: 物理学 力学 天文学 49 067001

    Chen Q, Yang H, Li R, Han R, Sun Q C 2019 Sci. Sin.: Phys. Mech. Astron. 49 067001

    [11]

    Cundall P A, Strack O D L 1979 Géotechnique 29 47Google Scholar

    [12]

    赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢 2018 物理学报 67 104502Google Scholar

    Zhao Z Y, Li Y J, Wang F S, Zhang Q, Hou M Y, Li W H, Ma G 2018 Acta Phys. Sin. 67 104502Google Scholar

    [13]

    Chand R, Khaskheli M A, Qadir A, Ge B, Shi Q 2012 Physica A 391 4590Google Scholar

    [14]

    黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明 2012 物理学报 61 124501Google Scholar

    Huang D C, Feng Y D, Xie W M, Lu M, Wu H P, Hu F L, Deng K M 2012 Acta Phys. Sin. 61 124501Google Scholar

    [15]

    Gui N, Fan J 2015 Int. J. Heat Mass Tran. 84 740Google Scholar

    [16]

    Xiao X, Tan Y, Zhang H, Deng R, Jiang S 2017 Powder Technol. 314 182Google Scholar

    [17]

    Chou S H, Hu H J, Hsiau S S 2016 Adv. Powder Technol. 27 1912Google Scholar

    [18]

    Halidan M, Chandratilleke G R, Dong K J, Yu A B 2018 Powder Technol. 325 92Google Scholar

    [19]

    高红利, 赵永志, 刘格思, 陈友川, 郑津洋 2011 物理学报 60 074501Google Scholar

    Gao H L, Zhao Y Z, Liu G S, Chen Y C, Zheng J Y 2011 Acta Phys. Sin. 60 074501Google Scholar

    [20]

    Zhong W, Yu A, Liu X, Tong Z, Zhang H 2016 Powder Technol. 302 108Google Scholar

    [21]

    Lu G, Third J R, Müller C R 2015 Chem. Eng. Sci. 127 425Google Scholar

    [22]

    Obermayr M, Dressler K, Vrettos C, Eberhard P 2013 Comput. Geotech. 49 299Google Scholar

    [23]

    Govender N, Wilke D N, Kok S 2015 Appl. Math. Comput. 267 810

    [24]

    刘璐, 季顺迎 2019 中国科学: 物理学 力学 天文学 49 064601

    Liu L, Ji S Y 2019 Sci. Sin.: Phys. Mech. Astron. 49 064601

    [25]

    王嗣强, 季顺迎 2018 物理学报 67 094501Google Scholar

    Wang S Q, Ji S Y 2018 Acta Phys. Sin. 67 094501Google Scholar

    [26]

    Garboczi E J, Bullard J W 2017 Adv. Powder Technol. 28 325Google Scholar

    [27]

    Gui N, Yang X, Tu J, Jiang S 2017 Powder Technol. 318 248Google Scholar

    [28]

    Ma H, Zhao Y 2017 Chem. Eng. Sci. 172 636Google Scholar

    [29]

    Ma H, Zhao Y 2018 Granul. Matter 20 41Google Scholar

    [30]

    Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C 2010 Chem. Eng. Sci. 65 5863Google Scholar

    [31]

    You Y, Zhao Y 2018 Powder Technol. 331 179Google Scholar

    [32]

    Barr 1981 IEEE Comput. Graph. Appl. 1 11Google Scholar

    [33]

    Soltanbeigi B, Podlozhnyuk A, Papanicolopulos S A, Kloss C, Pirker S, Ooi J Y 2018 Powder Technol. 329 288Google Scholar

    [34]

    Houlsby G T 2009 Powder Technol. 36 953

    [35]

    Podlozhnyuk A, Pirker S, Kloss C 2016 Comput. Part. Mech. 4 101

    [36]

    Zhou Z Y, Zou R P, Pinson D, Yu A B 2011 Ind. Eng. Chem. Res. 50 9787Google Scholar

    [37]

    He S Y, Gan J Q, Pinson D, Zhou Z Y 2019 Powder Technol. 341 157Google Scholar

    [38]

    Goldman R 2005 Comput. Aided Geom. D 22 632Google Scholar

    [39]

    Lacey P M C 1954 J. Chem. Technol. Biot. 4 257

    [40]

    Jiang M, Zhao Y, Liu G, Zheng J 2011 Particuology 9 270Google Scholar

    [41]

    He S, Gan J, Pinson D, Zhou Z 2017 EPJ Web of Conferences 140 06018Google Scholar

    [42]

    Donev A, Cisse I, Sachs D, Variano E A, Stillinger F H, Connelly R, Torquato S, Chaikin P M 2004 Science 303 990Google Scholar

    [43]

    Delaney G W, Cleary P W 2010 Europhys. Lett. 89 34002Google Scholar

  • 图 1  球体和椭球的超二次曲面离散元模型 (a) a = b = 2c; (b) a = b = c; (c) a = b = 0.5c

    Figure 1.  Super-quadric discrete element model of spherical and ellipsoidal elements: (a) a = b = 2c; (b) a = b = c; (c) a = b = 0.5c

    图 2  超二次曲面单元间的接触检测

    Figure 2.  Contact detection between super-quadric particles

    图 3  不同转动圈数下颗粒混合过程的实验结果[31]和离散元数值结果的对比 (a) ωr = 20 r/min的流动图案; (b) ωr = 20 r/min的Lacey混合指数; (c) ωr = 40 r/min的Lacey混合指数

    Figure 3.  Comparison of mixing process between experiment results[31] and DEM simulation results at different rotating speeds: (a) Mixing pattern at 20 r/min; (b) Lacey mixing index at 20 r/min; (c) Lacey mixing index at 40 r/min.

    图 4  三维水平圆筒的离散元数值模型(a)和不同长宽比的椭球模型(b)

    Figure 4.  Schematic diagram of three-dimensional horizontal drum simulated by DEM model (a) and examples of ellipsoids with different aspect ratios (b)

    图 5  旋转速度和颗粒长宽比对混合过程的影响 (a) ωr = 20 r/min的椭球颗粒(σ = 3.0); (b) ωr = 40 r/min的椭球颗粒(σ = 3.0); (c) ωr = 20 r/min的球体颗粒(σ = 1.0); (d) ωr = 20 r/min的椭球颗粒(σ = 0.5)

    Figure 5.  The influence of rotating speed and aspect ratio on the mixing process: (a) Ellipsoids (σ = 3.0) at 20 r/min; (b) ellipsoids (σ = 3.0) at 40 r/min; (c) sphere (σ = 1.0) at 20 r/min; (d) ellipsoids (σ = 0.5) at 20 r/min

    图 6  旋转速度和颗粒形状对Lacey混合指数和混合率的影响 (a) 椭球颗粒(σ = 0.5); (b) 椭球颗粒(σ = 3.0); (c) 混合率

    Figure 6.  The influence of rotating speed and particle shape on the Lacey mixing index and mixing rate: (a) Ellipsoids (σ = 0.5); (b) ellipsoids (σ = 3.0); (c) mixing rate.

    图 7  ωr = 30 r/min时椭球和球形颗粒的混合率随填充分数的变化

    Figure 7.  Mixing rate of the ellipsoid and spherical particles varies with the fill level at ωr = 30 r/min

    图 8  ωr = 30 r/min时椭球颗粒的混合率和初始体积分数的变化 (a)混合率; (b)初始密集度

    Figure 8.  Mixing rate and initial packing fraction under various aspect ratios at 30 r/min: (a) Mixing rate; (b) initial packing fraction

    图 9  不同转速下球体和椭球颗粒的速度分布 (a) 椭球(σ = 0.5); (b) 球体(σ = 1.0); (c) 椭球(σ = 3.0)

    Figure 9.  The velocity profiles of granular bed for differently shaped particles: (a) Ellipsoids (σ = 0.5); (b) spheres (σ = 1.0); (c) ellip-soids (σ = 3.0)

    图 10  在不同转速下球体和椭球颗粒的平动动能和转动动能随时间的变化 (a), (b) 椭球(σ = 0.5); (c), (d) 球体(σ = 1.0); (e), (f) 椭球(σ = 3.0)

    Figure 10.  Translational and rotational kinetic energy at different rotating speeds for differently shaped particles: (a), (b) Ellipsoids (σ = 0.5); (c), (d) spheres (σ = 1.0); (e), (f) ellipsoids (σ = 3.0)

    图 11  ωr = 30和50 r/min时球体和椭球颗粒的平动和转动动能  (a)平均平动动能; (b)平均转动动能

    Figure 11.  Translational and rotational kinetic energy at 30 and 50 r/min for spheres and ellipsoids: (a) Average translational kinetic energy; (b) average rotational kinetic energy

    表 1  椭球颗粒离散元模拟的主要计算参数

    Table 1.  DEM simulation parameters of ellipsoids

    参数符号单位数值参数符号单位数值
    弹性模量EGPa1.0颗粒间摩擦系数μs0.3
    泊松比ν0.3法向阻尼系数Cn0.05
    颗粒密度ρkg/m31150.0切向阻尼系数Ct0.05
    颗粒与圆筒的摩擦系数μws0.9时间步长dts1 × 10–6
    DownLoad: CSV
  • [1]

    Gioia G, Ott-Monsivais S E, Hill K M 2006 Phys. Rev. Lett. 96 138001Google Scholar

    [2]

    Emilien A, Farhang R 2014 Phys. Rev. Lett. 112 078001Google Scholar

    [3]

    Jaeger H M, Nagel S R 1992 Science 255 1523Google Scholar

    [4]

    季顺迎, 孙其诚, 严颖 2011 中国科学: 物理学 力学 天文学 41 1112

    Ji S Y, Sun Q C, Yan Y 2011 Sci. Sin-Phys. Mech. Astron. 41 1112

    [5]

    黄德财, 孙刚, 厚美瑛, 陆坤权 2006 物理学报 55 4754Google Scholar

    Huang D C, Sun G, Hou M Y, Lu K Q 2006 Acta Phys. Sin. 55 4754Google Scholar

    [6]

    彭政, 蒋亦民, 刘锐, 厚美瑛 2013 物理学报 62 024502Google Scholar

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502Google Scholar

    [7]

    孙其诚, 王光谦 2008 物理学报 57 4667Google Scholar

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667Google Scholar

    [8]

    夏建新, 吉祖稳, 毛旭锋, 曹华德 2013 科学通报 58 1200

    Xia J X, Ji Z W, Mao X F, Cao H D 2013 Chin. Sci. Bull. 58 1200

    [9]

    刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲 2015 物理学报 64 114501Google Scholar

    Liu Y, Han Y L, Jia F G, Yao L N, Wang H, Shi Y F 2015 Acta Phys. Sin. 64 114501Google Scholar

    [10]

    陈泉, 杨晖, 李然, 韩韧, 孙其诚 2019 中国科学: 物理学 力学 天文学 49 067001

    Chen Q, Yang H, Li R, Han R, Sun Q C 2019 Sci. Sin.: Phys. Mech. Astron. 49 067001

    [11]

    Cundall P A, Strack O D L 1979 Géotechnique 29 47Google Scholar

    [12]

    赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢 2018 物理学报 67 104502Google Scholar

    Zhao Z Y, Li Y J, Wang F S, Zhang Q, Hou M Y, Li W H, Ma G 2018 Acta Phys. Sin. 67 104502Google Scholar

    [13]

    Chand R, Khaskheli M A, Qadir A, Ge B, Shi Q 2012 Physica A 391 4590Google Scholar

    [14]

    黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明 2012 物理学报 61 124501Google Scholar

    Huang D C, Feng Y D, Xie W M, Lu M, Wu H P, Hu F L, Deng K M 2012 Acta Phys. Sin. 61 124501Google Scholar

    [15]

    Gui N, Fan J 2015 Int. J. Heat Mass Tran. 84 740Google Scholar

    [16]

    Xiao X, Tan Y, Zhang H, Deng R, Jiang S 2017 Powder Technol. 314 182Google Scholar

    [17]

    Chou S H, Hu H J, Hsiau S S 2016 Adv. Powder Technol. 27 1912Google Scholar

    [18]

    Halidan M, Chandratilleke G R, Dong K J, Yu A B 2018 Powder Technol. 325 92Google Scholar

    [19]

    高红利, 赵永志, 刘格思, 陈友川, 郑津洋 2011 物理学报 60 074501Google Scholar

    Gao H L, Zhao Y Z, Liu G S, Chen Y C, Zheng J Y 2011 Acta Phys. Sin. 60 074501Google Scholar

    [20]

    Zhong W, Yu A, Liu X, Tong Z, Zhang H 2016 Powder Technol. 302 108Google Scholar

    [21]

    Lu G, Third J R, Müller C R 2015 Chem. Eng. Sci. 127 425Google Scholar

    [22]

    Obermayr M, Dressler K, Vrettos C, Eberhard P 2013 Comput. Geotech. 49 299Google Scholar

    [23]

    Govender N, Wilke D N, Kok S 2015 Appl. Math. Comput. 267 810

    [24]

    刘璐, 季顺迎 2019 中国科学: 物理学 力学 天文学 49 064601

    Liu L, Ji S Y 2019 Sci. Sin.: Phys. Mech. Astron. 49 064601

    [25]

    王嗣强, 季顺迎 2018 物理学报 67 094501Google Scholar

    Wang S Q, Ji S Y 2018 Acta Phys. Sin. 67 094501Google Scholar

    [26]

    Garboczi E J, Bullard J W 2017 Adv. Powder Technol. 28 325Google Scholar

    [27]

    Gui N, Yang X, Tu J, Jiang S 2017 Powder Technol. 318 248Google Scholar

    [28]

    Ma H, Zhao Y 2017 Chem. Eng. Sci. 172 636Google Scholar

    [29]

    Ma H, Zhao Y 2018 Granul. Matter 20 41Google Scholar

    [30]

    Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C 2010 Chem. Eng. Sci. 65 5863Google Scholar

    [31]

    You Y, Zhao Y 2018 Powder Technol. 331 179Google Scholar

    [32]

    Barr 1981 IEEE Comput. Graph. Appl. 1 11Google Scholar

    [33]

    Soltanbeigi B, Podlozhnyuk A, Papanicolopulos S A, Kloss C, Pirker S, Ooi J Y 2018 Powder Technol. 329 288Google Scholar

    [34]

    Houlsby G T 2009 Powder Technol. 36 953

    [35]

    Podlozhnyuk A, Pirker S, Kloss C 2016 Comput. Part. Mech. 4 101

    [36]

    Zhou Z Y, Zou R P, Pinson D, Yu A B 2011 Ind. Eng. Chem. Res. 50 9787Google Scholar

    [37]

    He S Y, Gan J Q, Pinson D, Zhou Z Y 2019 Powder Technol. 341 157Google Scholar

    [38]

    Goldman R 2005 Comput. Aided Geom. D 22 632Google Scholar

    [39]

    Lacey P M C 1954 J. Chem. Technol. Biot. 4 257

    [40]

    Jiang M, Zhao Y, Liu G, Zheng J 2011 Particuology 9 270Google Scholar

    [41]

    He S, Gan J, Pinson D, Zhou Z 2017 EPJ Web of Conferences 140 06018Google Scholar

    [42]

    Donev A, Cisse I, Sachs D, Variano E A, Stillinger F H, Connelly R, Torquato S, Chaikin P M 2004 Science 303 990Google Scholar

    [43]

    Delaney G W, Cleary P W 2010 Europhys. Lett. 89 34002Google Scholar

  • [1] Wei Zhen-Yu, Liu Ya-Kun. Study on the Characteristics and Influencing Factors of Excited Oxygen Atom Generation in Secondary Streamer Discharge of Mixed Gases with Different Oxygen Concentrations. Acta Physica Sinica, 2025, 74(3): . doi: 10.7498/aps.74.20241550
    [2] Cao Ming-Peng, Wu Xiao-Peng, Guan Hong-Shan, Shan Guang-Bao, Zhou Bin, Yang Li-Hong, Yang Yin-Tang. Electrothermal coupling analysis of three-dimensional integrated microsystem based on dual cell method. Acta Physica Sinica, 2021, 70(7): 074401. doi: 10.7498/aps.70.20201628
    [3] Sun Yan-Li, Wang Hua-Guang, Zhang Ze-Xin. Glass transition in binary mixture of colloidal ellipsoids and spheres. Acta Physica Sinica, 2018, 67(10): 106401. doi: 10.7498/aps.67.20180264
    [4] Wang Si-Qiang, Ji Shun-Ying. Discrete element analysis of buffering capacity of non-spherical granular materials based on super-quadric method. Acta Physica Sinica, 2018, 67(9): 094501. doi: 10.7498/aps.67.20172549
    [5] Jiao Yang, Zhang Xin-Xi, Kong Fan-Cheng, Liu Hair-Shun. Discrete element simulation of impact disaggregation for wet granule agglomerate. Acta Physica Sinica, 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [6] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [7] Li Shu-Chen, Ping Yang, Li Shu-Cai, Kou Qiang, Ma Teng-Fei, Feng Bing-Yang. Particles discrete element method based on manifold cover for macro-mesoscopic fracture of rock mass. Acta Physica Sinica, 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [8] Wang Yan-Song, Gao Jin-Song, Xu Nian-Xi, Tang Yang, Chen Xin. A novel frequency selective surface of hybrid-element type with sharply decreased stop-band. Acta Physica Sinica, 2014, 63(7): 078402. doi: 10.7498/aps.63.078402
    [9] Zhao La-La, Zhao Yue-Min, Liu Chu-Sheng, Li Jun. Discrete element simulation of mechanical properties of wet granular pile. Acta Physica Sinica, 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [10] Yu Wan-Bo, Zhou Yang. Chaos analysis of the rational Bézier biquadratic surface in the unit area. Acta Physica Sinica, 2013, 62(22): 220501. doi: 10.7498/aps.62.220501
    [11] Wei Wei, Lu Lu-Yi, Gu Zhao-Lin. Modeling and simulation of electrification of wind-blown-sand two-phase flow. Acta Physica Sinica, 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [12] Wang Shuang, Zheng Zhou-Shun, Zhou Wen. The pressure wave analysis in high velocity compaction process. Acta Physica Sinica, 2011, 60(12): 128101. doi: 10.7498/aps.60.128101
    [13] Gao Hong-Li, Zhao Yong-Zhi, Liu Ge-Si, Chen You-Chuan, Zheng Jin-Yang. Effect of damping on segregation of size-type binary granularsystems in a rotating horizontal drum. Acta Physica Sinica, 2011, 60(7): 074501. doi: 10.7498/aps.60.074501
    [14] Gao Hong-Li, Chen You-Chuan, Zhao Yong-Zhi, Zheng Jin-Yang. Simulation of mixing process for size-type binary wet particulate systems in a rotating horizontal drum by discrete element method. Acta Physica Sinica, 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [15] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Xu Zhi-Peng. Numerical simulation on segregation process of particles using 3D discrete element method. Acta Physica Sinica, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [16] Zhao Yong-Zhi, Zhang Xian-Qi, Liu Yan-Lei, Zheng Jin-Yang. Augmenting the mixing of size-type binary granular systems in a rotating horizontal drum. Acta Physica Sinica, 2009, 58(12): 8386-8393. doi: 10.7498/aps.58.8386
    [17] Zhao Yong-Zhi, Jiang Mao-Qiang, Xu Ping, Zheng Jin-Yang. Discrete element simulation of the microscopic mechanical structure in sandpile. Acta Physica Sinica, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [18] Peng Zheng, Hou Mei-Ying, Shi Qing-Fan, Lu Kun-Quan. Effect of particle size on the sinking depth of an object supported by a granular bed. Acta Physica Sinica, 2007, 56(2): 1195-1202. doi: 10.7498/aps.56.1195
    [19] Qin Yi-Xiao, Cheng Yu-Min. Reproducing kernel particle boundary element-free method for elasticity. Acta Physica Sinica, 2006, 55(7): 3215-3222. doi: 10.7498/aps.55.3215
    [20] LI LE, YU GONG-DA, DONG SHU-YAN, WANG GONG-MING, ZHANG ZHI-MING. STUDIES ON THE ADSORPTION OF PYRIDINE MOLECULES ON SILVER SURFACES BY SHG METHOD. Acta Physica Sinica, 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
Metrics
  • Abstract views:  10350
  • PDF Downloads:  111
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2019
  • Accepted Date:  12 August 2019
  • Available Online:  27 November 2019
  • Published Online:  05 December 2019

/

返回文章
返回