Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dislocation defect states in acoustic quadrupole topological insulators

Jiang Jing Wang XiaoYun Kong Peng Zhao HePing He ZhaoJian Deng Ke

Citation:

Dislocation defect states in acoustic quadrupole topological insulators

Jiang Jing, Wang XiaoYun, Kong Peng, Zhao HePing, He ZhaoJian, Deng Ke
PDF
Get Citation
  • Quadrupole topological insulators (QTIs) are the first proposed higher-order topological phase of matter with quantized quadrupole moment but zero dipole moment. The QTIs have expanded widely the traditional bulk-boundary correspondence, giving rise to the observation of lower-dimensional topological boundary states. The recent interest turns to bulk-dislocation correspondence, which dominates the topological states localized to disclinations, and links the reciprocal-space topology of a lattice to the emergence of dislocation states. Recently, many research groups have turned the studies of dislocation defects to classical waves systems. The methods to induce the dislocation defects in these researches are to remove part of the lattices of topological insulator and then rearrange the remaining of the topological insulator. However, through such methods, the micro structures of the lattices were changed, it is difficult to realize in the actual operation. In this paper, we study the dislocation defect states in acoustic QTIs. The acoustic QTIs is designed by reversing the magnitude of the intracellular and extracellular coupling in the system, and the bulk energy bands and topological corner states are studied. Subsequently, by introducing partial trivial lattices into acoustic QTI structures, the dislocation bound states are generated at the corner formed by two different topological phases, which can be characterized by a ½ quantized fractional charge. The robustness of the topological dislocation states is verified by introducing the imperfection inside the system. Further, it is demonstrated that the dislocation positions can be designed at will. Without changing the microstructure of the lattice, we have successfully achieved the modulation of line dislocation states and bulk dislocation states. The topological dislocation states studied in this work broaden the classification of higher-order topological phases in artificial structures, and provide new insights into the acoustic applications of higher-order topology, such as sensing and high-performance energy harvesting. Figure. (a) The tight-binding (TB) model and the corresponding acoustic model for QTI. (b) The corresponding band structures for the acoustic QTI. (c) The model structure to create the bulk-dislocation states. (d) The corresponding band structures for the bulk-dislocation model. In the following, we briefly present the key importance in this work. The tight-binding (TB) model is employed to characterize the quadrupole topological insulator as shown in Fig. (a), the single cell is marked by the light shaded square sketches in the middle of Fig (a). The corresponding band structure for the acoustic QTI model is displayed in Fig. (b). It can be observed that the coupled Pz modes in resonant cavities are splitted into two pairs of flat bands in QTI, which are separated by a gap with frequency ranging from 7558.7 Hz to 8359.8 Hz. Each pair of flat bands are almost double degenerated. In Fig. (c), we schematically exhibit the bulk-dislocation defect of TB model by inserting one row of trivial lattices (marked with orange rectangle) in the QTI. Along the defect, we choose the site at will to form the bulk dislocation (marked with red circles). The black thin lines indicate the weak couplings. The corresponding band structure for the bulk-dislocation defect is displayed in Fig. (d). It can be clearly seen that two bulk-dislocation states (red dots) are created within the gap of coupled Pz modes.
  • [1]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Phys. Rev. B 96 245115

    [2]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61

    [3]

    Serra-Garcia M, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G, Huber S D 2018 Nature 555 342

    [4]

    Huang X, Lu J, Yan Z, Yan M, Deng W, Chen G, Liu Z 2022 Sci. Bull. 67 488

    [5]

    Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F, Liu Z 2017 Nat. Phys. 13 369

    [6]

    Biesenthal T, Maczewsky L J, Yang Z, Kremer M, Segev M, Szameit A, Heinrich M 2022 Science 376 1114

    [7]

    Song Z, Fang Z, Fang C 2017 Phys. Rev. Lett. 119 246402

    [8]

    Xue H, Yang Y, Zhang B 2022 Nat. Rev. Mater. 7 974

    [9]

    Ezawa, Motohiko 2018 Phys. Rev. Lett. 120 026801

    [10]

    Xie B, Wang H X, Zhang X, Zhan P, Jiang J H, Lu M, Chen Y 2021 Nat. Rev. Phys. 3 520

    [11]

    Pu Z, He H, Luo L, Ma Q, Ye L, Ke M, Liu Z 2023 Phys. Rev. Lett. 130 116103

    [12]

    Ma Q, Pu Z, Ye L, Lu J, Huang X, Ke M, He H, Deng W, Liu Z 2024 Phys. Rev. Lett. 132 066601

    [13]

    Zhu W, Deng W, Liu Y, Lu J, Wang H-X, Lin Z-K, Huang X, Jiang J, Liu Z 2023 Rep. Prog. Phys. 86 106501

    [14]

    Wu J, Huang X, Lu J, Wu Y, Deng W, Li F, Liu Z 2020 Phys. Rev. B 102 104109

    [15]

    Hu J R, Kong P, Bi R G, Deng K, Zhao H P 2022 Acta Phys. Sin. 71 190 (in Chinese) [胡军容, 孔鹏, 毕仁贵, 邓科, 赵鹤平 2022 物理学报 71 190]

    [16]

    Mittal S, Orre V V, Zhu G, Gorlach M A, Poddubny A, Hafezi M 2019 Nat. Photonics 13 692

    [17]

    Qi Y, Qiu C, Xiao M, He H, Ke M, Liu Z 2020 Phys. Rev. Lett. 124 206601

    [18]

    Li C A, Wu S S 2020 Phys. Rev. B 101 195309

    [19]

    Li C A, Fu B, Hu Z-A, Li J, Shen S Q 2020 Phys. Rev. Lett. 125 166801

    [20]

    Qi Y, He H, Xiao M 2022 Appl. Phys. Lett. 120 212202

    [21]

    Ye L, Qiu C, Xiao M, Li T, Du J, Ke M, Liu Z 2022 Nat. Commun. 13 508

    [22]

    Yamada S S, Li T, Lin M, Peterson C W, Hughes T L, Bahl G 2022 Nat. Commun. 13 2035

    [23]

    Ran Y, Zhang Y, Vishwanath A 2009 Nat. Phys. 5 298

    [24]

    Grinberg I H, Lin M, Benalcazar W A, Hughes T L, Bahl G 2020 Phys. Rev. Appl. 14 064042

    [25]

    Xue H, Jia D, Ge Y, Guan Y j, Wang Q, Yuan S q, Sun H X, Chong Y, Zhang B 2021 Phys. Rev. Lett. 127 214301

    [26]

    Teo J C, Hughes T L 2017 Annu. Rev. Condens. Matter Phys. 8 211

    [27]

    Peterson C W, Li T, Jiang W, Hughes T L, Bahl G 2021 Nature 589 376

    [28]

    Liu Y, Leung S, Li F F, Lin Z K, Tao X, Poo Y, Jiang J H 2021 Nature 589 381

    [29]

    Wei H, Tsui D, Paalanen M, Pruisken A 1988 Phys. Rev. Lett. 61 1294

    [30]

    Roberts E, Behrends J, Béri B 2020 Phys. Rev. B 101 155133

    [31]

    Liu F, Wakabayashi K 2017 Phys. Rev. Lett. 118 076803

    [32]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903

    [33]

    Yang Y B, Li K, Duan L-M, Xu Y 2021 Phys. Rev. B 103 085408

    [34]

    Wang H X, Lin Z K, Jiang B, Guo G Y, Jiang J H 2020 Phys. Rev. Lett. 125 146401

    [35]

    He L, Addison Z, Mele E J, Zhen B 2020 Nat. Commun. 11 3119

    [36]

    Benalcazar W A, Li T, Hughes T L 2019 Phys. Rev. B 99 245151

    [37]

    Weiner M, Ni X, Li M, Alù A, Khanikaev A B 2020 Sci. Adv. 6 eaay4166

    [38]

    Wheeler W A, Wagner L K, Hughes T L 2019 Phys. Rev. B 100 245135

    [39]

    Zhang X, Xie B Y, Wang H F, Xu X, Tian Y, Jiang J H, Lu M H, Chen Y F 2019 Nat. Commun. 10 5331

    [40]

    Kang B, Shiozaki K, Cho G Y 2019 Phys. Rev. B 100 245134

    [41]

    Ni X, Li M, Weiner M, Alù A, Khanikaev A B 2020 Nat. Commun. 11 2108

    [42]

    Zheng S, Man X, Kong Z L, Lin Z-K, Duan G, Chen N, Yu D, Jiang J H, Xia B 2022 Sci. Bull. 67 2069

    [43]

    Kim H R, Hwang M-S, Smirnova D, Jeong K Y, Kivshar Y, Park H G 2020 Nat. Commun. 11 5758

    [44]

    Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F 2018 Phys. Rev. B 98 205147

    [45]

    Li Y M, Kong P, Bi R G, He Z J, Deng K 2022 Acta Phys. Sin. 71 254 (in Chinese) [李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科 2022 物理学报 71 254]

    [46]

    Chen Y, Liu D, Wu Y, Yu P, Liu Y 2023 Int. J. Mech. Sci. 239 107884

  • [1] Han Dong-Hai, Zhang Guang-Jun, Zhao Jing-Bo, Yao Hong. Low-frequency bandgaps and sound isolation characteristics of a novel Helmholtz-type phononic crystal. Acta Physica Sinica, doi: 10.7498/aps.71.20211932
    [2] Gao Hui-Fen, Zhou Xiao-Fang, Huang Xue-Qin. Zak phase induced interface states in two-dimensional phononic crystals. Acta Physica Sinica, doi: 10.7498/aps.71.20211642
    [3] Li Yin-Ming, Kong Peng, Bi Ren-Gui, He Zhao-Jian, Deng Ke. Valley topological states in double-surface periodic elastic phonon crystal plates. Acta Physica Sinica, doi: 10.7498/aps.71.20221292
    [4] Zak phase induces interface states in two-dimensional phononic crystals. Acta Physica Sinica, doi: 10.7498/aps.70.20211642
    [5] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, doi: 10.7498/aps.69.20200542
    [6] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, doi: 10.7498/aps.68.20191007
    [7] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, doi: 10.7498/aps.68.20190951
    [8] Sun Wei-Bin, Wang Ting, Sun Xiao-Wei, Kang Tai-Feng, Tan Zi-Hao, Liu Zi-Jiang. Defect states and vibration energy recovery of novel two-dimensional piezoelectric phononic crystal plate. Acta Physica Sinica, doi: 10.7498/aps.68.20190260
    [9] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, doi: 10.7498/aps.66.224301
    [10] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, doi: 10.7498/aps.66.227804
    [11] Cao Hui-Xian, Mei Jun. Semi-Dirac points in two-dimensional phononic crystals. Acta Physica Sinica, doi: 10.7498/aps.64.194301
    [12] Hou Li-Na, Hou Zhi-Lin, Fu Xiu-Jun. Defect state of the locally resonant phononic crystal. Acta Physica Sinica, doi: 10.7498/aps.63.034305
    [13] Chen Sheng-Bing, Han Xiao-Yun, Yu Dian-Long, Wen Ji-Hong. Influences of different types of piezoelectric shunting circuits on band gaps of phononic beam. Acta Physica Sinica, doi: 10.7498/aps.59.387
    [14] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Scattering channel in focus imaging of two-dimensional phononic crystal panel. Acta Physica Sinica, doi: 10.7498/aps.59.381
    [15] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, doi: 10.7498/aps.59.376
    [16] Cai Li, Han Xiao-Yun. Study of the band-structure and the uncoupled modes in two-dimensional phononic crystals with the multiple-scattering theory. Acta Physica Sinica, doi: 10.7498/aps.55.5866
    [17] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, doi: 10.7498/aps.55.4744
    [18] Zhao Fang, Yuan Li-Bo. Defect states of homogeneity dislocation structures in two-dimensional phononic crystal. Acta Physica Sinica, doi: 10.7498/aps.55.517
    [19] Li Xiao-Chun, Yi Xiu-Ying, Xiao Qing-Wu, Liang Hong-Yu. Defect states in three-component phononic crystal. Acta Physica Sinica, doi: 10.7498/aps.55.2300
    [20] Zhao Fang, Yuan Li-Bo. Characteristics of the band structure in two-dimensional phononic crystals with complex lattices. Acta Physica Sinica, doi: 10.7498/aps.54.4511
Metrics
  • Abstract views:  194
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Available Online:  18 June 2024

/

返回文章
返回