Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zak phase induced interface states in two-dimensional phononic crystals

Gao Hui-Fen Zhou Xiao-Fang Huang Xue-Qin

Citation:

Zak phase induced interface states in two-dimensional phononic crystals

Gao Hui-Fen, Zhou Xiao-Fang, Huang Xue-Qin
PDF
HTML
Get Citation
  • Interface states have great practical applications, therefore, searching for the existence of interface states has both scientific significance and application prospects. In this work, we tilt the structure unite of two-dimensional phononic crystal with a square lattice to construct an oblique lattice possessing linear Dirac dispersion. The Dirac dispersion gives rise to a π jump of the Zak phases of the bulk bands, so that the projected band gaps at both sides of the Dirac cone have opposite signs of surface impedance, resulting in deterministic interface states at the interface formed by the phononic crystal with a square lattice and its tilted oblique lattice system.
      Corresponding author: Gao Hui-Fen, huifen_gao@163.com
    • Funds: Project supported by the College-level Sub-projects of Changzhi University of National Natural Science Foundation of China(Grant No. GZRZ2020002), Science and Technology Innovation Project of Colleges and Universities in Shanxi Province, China (Grant No. 2019L905), and Education Science Planning Project of Shanxi Province, China (Grant No. HLW-20121)
    [1]

    Wu F, Liu Z, Liu Y 2002 Phys. Rev. E 66 046628Google Scholar

    [2]

    Ke M, Liu Z, Qiu C, Wang W, Shi J, Wen W, Sheng P 2005 Phys. Rev. B 72 064306

    [3]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [4]

    Climente A, Torrent D, Sánchez-Dehesa J 2010 Appl. Phys. Lett. 97 104103Google Scholar

    [5]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [6]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [7]

    Zhang X J, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97Google Scholar

    [8]

    Sigalas M, Economou E 1992 J. Sound Vib. 158 377Google Scholar

    [9]

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [10]

    Khanikaev A B, Fleury R, Mousavi S H, Alu A 2015 Nat. Commun. 6 8260Google Scholar

    [11]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [12]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [13]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [14]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [15]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369Google Scholar

    [16]

    Deng W Y, Huang X Q, Lu J Y, Peri V, Li F, Huber S D, Liu Z Y 2020 Nat. Commun. 11 3227Google Scholar

    [17]

    Xie B, Liu H, Cheng H, Liu Z, Tian J, Chen S 2020 Light Sci. Appl. 9 201Google Scholar

    [18]

    Xiao M, Chen W, He W, Chen C T 2015 Nat. Phys. 11 920Google Scholar

    [19]

    Li F, Huang X, Lu J, Ma J, Liu Z 2018 Nat. Phys. 14 30Google Scholar

    [20]

    Deng W, Lu J, Li F, Huang X, Yan M, Ma J, Liu Z 2019 Nat. Commun. 10 1769Google Scholar

    [21]

    Lu J, Huang X, Yan M, Li F, Deng W, Liu Z 2020 Phys. Rev. Appl. 13 054080Google Scholar

    [22]

    Rusin T M, Zawadzki W 2008 Phys. Rev. B 78 125419Google Scholar

    [23]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620Google Scholar

    [24]

    Huang X, Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. B 90 075423Google Scholar

    [25]

    Huang X, Yang Y, Hang Z H, Zhang Z Q, Chan C T 2016 Phys. Rev. B 93 085415Google Scholar

    [26]

    Yang Y, Xu T, Xu Y F, Hang Z H 2017 Opt. Lett. 42 3085Google Scholar

    [27]

    Guinea F, Katsnelson M I, Geim A K 2009 Nat. Phys. 6 30

    [28]

    Wen X, Qiu C, Qi Y, Ye L, Ke M, Zhang F, Liu Z 2019 Nat. Phys. 15 352Google Scholar

    [29]

    Chong Y D, Wen X G, Soljacic M 2008 Phys. Rev. B 77 235125Google Scholar

    [30]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

  • 图 1  (a) 二维正方晶格声子晶体的能带结构, 插图是原胞示意图; (b) M点附近的三维能带结构, 对应于图(a)中的虚线区域. 橡胶与水的质量密度和声速分别为: $ \rho =1.3\times {10}^{3}\;\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $, $ v=500\;\mathrm{m}/\mathrm{s} $; $ {\rho }_{0}=1.0\times {10}^{3}\;\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $, $ {v}_{0}=1500\;\mathrm{m}/\mathrm{s} $

    Figure 1.  (a) Bulk band structure of a two-dimensional phononic crystal with a square lattice, consisting of a rubber cylinder in water. Inset: the unit cell. (b) 3 D bulk band structure around the M point, corresponding to the dashed region in (a). Here, the lattice constant and the radius of the cylinder are $ a=1\;\mathrm{m} $, and $ R=0.15 a $, respectively. The mass densities and sound velocity of the rubber and water are: $ \rho =1.3\times {10}^{3}\;\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $, $ v=500\;\mathrm{m}/\mathrm{s} $; and $ {\rho }_{0}=1.0\times {10}^{3}\;\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $, $ {v}_{0}=1500\;\mathrm{m}/\mathrm{s} $, respectively.

    图 2  (a) 倾斜角$ \alpha ={70}^ {\circ} $的斜方晶格体系的能带结构, 左插图是二维斜方晶格声子晶体的原胞, 右插图表示虚线区域的放大能带结构; (b)斜方晶格的第一布里渊区; (c) 线性狄拉克点附近的三维能带结构, 对应图(a)中的虚线区域

    Figure 2.  (a) Bulk band structure of an oblique lattice with the tilted angle $ \alpha ={70}^ {\circ} $, Inset: the unit cell (left); the enlarged band structure around the Dirac point near ${ {K}}_{1}$ point (right); (b) first Brillouin zone of the oblique lattice; (c) 3D bulk band structure around the Dirac point, corresponding to the dashed region in (a).

    图 3  (a) 正方晶格声子晶体沿x方向的投影能带; (b) 倾斜角$ \alpha ={70}^ {\circ} $的斜方晶格声子晶体沿x方向的投影能带$, \mathrm{I}\mathrm{m}\left(Z\right) $表示表面阻抗的虚部; (c) 由上述两个声子晶体构成的沿x方向界面的界面态色散关系, 粉色线表示界面态色散; (d)正方晶格和斜方晶格声子晶体构成的沿x方向的界面(左图), 频率为$ 937.4\;\mathrm{H}\mathrm{z} $的界面态本征声压场分布(右图)

    Figure 3.  (a)Projected band structures along the $ {k}_{x} $ direction of the phononic crystals with a square lattice; (b) projected band structures along the $ {k}_{x} $ direction of phononic crystals with an oblique lattice of $ \alpha ={70}^ {\circ} $, Im(Z) represents the imaginary part of surface impedance; (c)interface state dispersion along the $ {k}_{x} $ direction of the interface constructed by two phononic crystals with the square and oblique lattices, the pink lines denote the interface states; (d) the interface constructed by two phononic crystals with the square and oblique lattices(left), the eigen pressure field distribution of the interface state at $ 937.4\;\mathrm{H}\mathrm{z}\left(\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\right) $.

    图 4  倾斜角$ {\rm{\alpha }}={70}^ {\circ} $的斜方晶格声子晶体在$ {k}_{x}=0.6\;{\text{π}}/a $ (a) 和$ {k}_{x}=0.85\;{\text{π}}/a $(b)时沿$ {k}_{y} $方向的体能带; (c) 在$ {k}_{x}=0.85\;{\text{π}}/a $时, 正方晶格声子晶体沿$ {k}_{y} $方向的体能带, 其中红色区域和蓝色区域分别表示$ \mathrm{I}\mathrm{m}\left(Z\right) < 0 $$ \mathrm{I}\mathrm{m}\left(Z\right) > 0 $

    Figure 4.  Bulk band structures along the $ {k}_{y} $ direction of the phononic crystal with an oblique lattice with $ {\rm{\alpha }}={70}^ {\circ} $ for $ {k}_{x}=0.6\;{\text{π}}/a $(a) and $ {k}_{x}=0.85\;{\text{π}}/a $ (b); (c) bulk band structures along the $ {k}_{x} $ direction of the phononic crystal with a square lattice for $ {k}_{x}=0.85\;{\text{π}}/a $. The red and blue regions represent $ \mathrm{I}\mathrm{m}\left(Z\right) < 0 $ and $ \mathrm{I}\mathrm{m}\left(Z\right) > 0 $, respectively.

    图 5  $ \alpha ={50}^ {\circ} $斜方晶格与正方晶格声子晶体构成的沿x方向界面的界面态色散, 红色线和绿色线分别表示两个共同带隙中的界面态色散

    Figure 5.  Interface state dispersion along the $ {k}_{x} $ direction of the interface constructed by two phononic crystals with the square and oblique lattices with $ \alpha ={50}^ {\circ} $, the red line and the green line represent the interface state dispersion in the two common band gaps, respectively.

    图 6  铁柱子在环氧树脂中周期性排列构成二维声子晶体 (a) 二维正方晶格声子晶体的能带结构; (b) 倾斜角$ \alpha ={70}^ {\circ} $的斜方晶格体系的能带结构; (c)由上述两个声子晶体构成的沿x方向界面的界面态色散关系(左), 粉色线表示界面态色散, 频率为$ 529.6\;\mathrm{H}\mathrm{z} $的界面态本征位移场分布(右)

    Figure 6.  Two-dimensional phononic crystals are constructed by steel cylinders in epoxy: (a) Bulk band structure of a square lattice; (b) bulk band structure of an oblique lattice with the tilted angle $ \alpha ={70}^ {\circ} $; (c) the interface state dispersion along the $ {k}_{x} $ direction of the interface constructed by these two phononic crystals(Left), the pink line denotes the interface states, the eigen displacement field distribution of the interface state at $ 529.6\;\mathrm{H}\mathrm{z}\left(\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\right) $.

  • [1]

    Wu F, Liu Z, Liu Y 2002 Phys. Rev. E 66 046628Google Scholar

    [2]

    Ke M, Liu Z, Qiu C, Wang W, Shi J, Wen W, Sheng P 2005 Phys. Rev. B 72 064306

    [3]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [4]

    Climente A, Torrent D, Sánchez-Dehesa J 2010 Appl. Phys. Lett. 97 104103Google Scholar

    [5]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [6]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [7]

    Zhang X J, Xiao M, Cheng Y, Lu M H, Christensen J 2018 Commun. Phys. 1 97Google Scholar

    [8]

    Sigalas M, Economou E 1992 J. Sound Vib. 158 377Google Scholar

    [9]

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [10]

    Khanikaev A B, Fleury R, Mousavi S H, Alu A 2015 Nat. Commun. 6 8260Google Scholar

    [11]

    Ding Y J, Peng Y G, Zhu Y F, Fan X D, Yang J, Liang B, Zhu X F, Wan X G, Cheng J C 2019 Phys. Rev. Lett. 122 014302Google Scholar

    [12]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016Google Scholar

    [13]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [14]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [15]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2017 Nat. Phys. 13 369Google Scholar

    [16]

    Deng W Y, Huang X Q, Lu J Y, Peri V, Li F, Huber S D, Liu Z Y 2020 Nat. Commun. 11 3227Google Scholar

    [17]

    Xie B, Liu H, Cheng H, Liu Z, Tian J, Chen S 2020 Light Sci. Appl. 9 201Google Scholar

    [18]

    Xiao M, Chen W, He W, Chen C T 2015 Nat. Phys. 11 920Google Scholar

    [19]

    Li F, Huang X, Lu J, Ma J, Liu Z 2018 Nat. Phys. 14 30Google Scholar

    [20]

    Deng W, Lu J, Li F, Huang X, Yan M, Ma J, Liu Z 2019 Nat. Commun. 10 1769Google Scholar

    [21]

    Lu J, Huang X, Yan M, Li F, Deng W, Liu Z 2020 Phys. Rev. Appl. 13 054080Google Scholar

    [22]

    Rusin T M, Zawadzki W 2008 Phys. Rev. B 78 125419Google Scholar

    [23]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620Google Scholar

    [24]

    Huang X, Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. B 90 075423Google Scholar

    [25]

    Huang X, Yang Y, Hang Z H, Zhang Z Q, Chan C T 2016 Phys. Rev. B 93 085415Google Scholar

    [26]

    Yang Y, Xu T, Xu Y F, Hang Z H 2017 Opt. Lett. 42 3085Google Scholar

    [27]

    Guinea F, Katsnelson M I, Geim A K 2009 Nat. Phys. 6 30

    [28]

    Wen X, Qiu C, Qi Y, Ye L, Ke M, Zhang F, Liu Z 2019 Nat. Phys. 15 352Google Scholar

    [29]

    Chong Y D, Wen X G, Soljacic M 2008 Phys. Rev. B 77 235125Google Scholar

    [30]

    Xiao M, Zhang Z Q, Chan C T 2014 Phys. Rev. X 4 021017

  • [1] Jiang Jing, Wang Xiao-Yun, Kong Peng, Zhao He-Ping, He Zhao-Jian, Deng Ke. Dislocation defect states in acoustic quadrupole topological insulators. Acta Physica Sinica, 2024, 73(15): 154302. doi: 10.7498/aps.73.20240640
    [2] Hu Chen-Yang, Liang Jia-Luo, Zheng Ri-Yi, Lu Jiu-Yang, Deng Wei-Yin, Huang Xue-Qin, Liu Zheng-You. One-dimensional synthetic waterborne phononic crystals. Acta Physica Sinica, 2024, 73(10): 104301. doi: 10.7498/aps.73.20240298
    [3] Huang Ze-Xin, Sheng Zong-Qiang, Cheng Le-Le, Cao San-Zhu, Chen Hua-Jun, Wu Hong-Wei. Steering non-Hermitian skin states by engineering interface in 1D nonreciprocal acoustic crystal. Acta Physica Sinica, 2024, 73(21): 214301. doi: 10.7498/aps.73.20241087
    [4] Han Dong-Hai, Zhang Guang-Jun, Zhao Jing-Bo, Yao Hong. Low-frequency bandgaps and sound isolation characteristics of a novel Helmholtz-type phononic crystal. Acta Physica Sinica, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [5] Dai Mei-Qin, Zhang Qing-Yue, Zhao Qiu-Ling, Wang Mao-Rong, Wang Xia. Controllable characteristics of interface states in one-dimensional inverted symmetric photonic structures. Acta Physica Sinica, 2022, 71(20): 204205. doi: 10.7498/aps.71.20220383
    [6] Li Yin-Ming, Kong Peng, Bi Ren-Gui, He Zhao-Jian, Deng Ke. Valley topological states in double-surface periodic elastic phonon crystal plates. Acta Physica Sinica, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [7] Zak phase induces interface states in two-dimensional phononic crystals. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211642
    [8] Dong Lei, Yang Jian-Qun, Zhen Zhao-Feng, Li Xing-Ji. Effects of pre-irradiated thermal treatment on ideal factor of excess base current in bipolar transistors. Acta Physica Sinica, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [9] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [10] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [11] Sun Wei-Bin, Wang Ting, Sun Xiao-Wei, Kang Tai-Feng, Tan Zi-Hao, Liu Zi-Jiang. Defect states and vibration energy recovery of novel two-dimensional piezoelectric phononic crystal plate. Acta Physica Sinica, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [12] Jia Zi-Yuan, Yang Yu-Ting, Ji Li-Yu, Hang Zhi-Hong. Deterministic interface states in photonic crystal with graphene-allotrope-like complex unit cells. Acta Physica Sinica, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [13] Wang Qing-Hai, Li Feng, Huang Xue-Qin, Lu Jiu-Yang, Liu Zheng-You. The topological phase transition and the tunable interface states in granular crystal. Acta Physica Sinica, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [14] Cao Hui-Xian, Mei Jun. Semi-Dirac points in two-dimensional phononic crystals. Acta Physica Sinica, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [15] Zhao Qi-Feng, Zhuang Yi-Qi, Bao Jun-Lin, Hu Wei. Quantitative separation of radiation induced charges for NPN bipolar junction transistors based on 1/f noise model. Acta Physica Sinica, 2015, 64(13): 136104. doi: 10.7498/aps.64.136104
    [16] Hou Li-Na, Hou Zhi-Lin, Fu Xiu-Jun. Defect state of the locally resonant phononic crystal. Acta Physica Sinica, 2014, 63(3): 034305. doi: 10.7498/aps.63.034305
    [17] Zhao Fang, Yuan Li-Bo. Defect states of homogeneity dislocation structures in two-dimensional phononic crystal. Acta Physica Sinica, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [18] Li Xiao-Chun, Yi Xiu-Ying, Xiao Qing-Wu, Liang Hong-Yu. Defect states in three-component phononic crystal. Acta Physica Sinica, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [19] Tang Xiao-Yan, Zhang Yi-Men, Zhang Yu-Ming, Gao Jin-Xia. Study of the effect of interface state charges on field-effect mobility of n-channel 6H-SiC MOSFET. Acta Physica Sinica, 2003, 52(4): 830-833. doi: 10.7498/aps.52.830
    [20] REN HONG-XIA, HAO YUE, XU DONG-GANG. STUDY ON HOT-CARRIER-EFFECT FOR GROOVED-GATE N-CHANNEL METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT-TRANSISTOR. Acta Physica Sinica, 2000, 49(7): 1241-1248. doi: 10.7498/aps.49.1241
Metrics
  • Abstract views:  5015
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2021
  • Accepted Date:  21 October 2021
  • Available Online:  14 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回