Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and research of a broadband mode-division multiplexer based on three-core photonic crystal fiber

Wang Xiao-Kai Li Jian-She Li Shu-Guang Guo Ying Meng Xiao-Jian Wang Guo-Rui Wang Lu-Yao Li Zeng-Hui Zhao Yuan-Yuan Ding Yu-Xin

Citation:

Design and research of a broadband mode-division multiplexer based on three-core photonic crystal fiber

Wang Xiao-Kai, Li Jian-She, Li Shu-Guang, Guo Ying, Meng Xiao-Jian, Wang Guo-Rui, Wang Lu-Yao, Li Zeng-Hui, Zhao Yuan-Yuan, Ding Yu-Xin
PDF
HTML
Get Citation
  • A broadband mode-division multiplexer based on asymmetric three-core photonic crystal fiber is proposed in this paper. The device is mainly composed of a central core, which can provide the transmission of fundamental mode and higher-order mode, and two side cores providing fundamental mode transmission. According to the theory of optical coupling, the LP01 mode light is input to the three fiber cores at the initial port separately, and in the transmission process the LP01 mode on the left side core will be coupled and converted into the LP21 mode light in the central core gradually. Similarly, the LP01 mode of the right side core is transformed into the LP31 mode of the center core. By optimizing the structural design and selecting the length of optical fiber, the best conversion from side core into central core can be completed at the output end simultaneously, thereby realizing the multiplexing of LP01, LP21 and LP31 modes in the central core. In the opposite direction, if the output end of the device is used as the initial port, the demultiplexing of three modes of light from the central core to the three cores can be realized. In thiswork, the finite element method and beam propagation method are used to optimize the simulation, and the optical coupling theory and supermode theory are combined to conduct analysis and calculation. The results show that at wavelength band from 1.49 μm to 1.63 μm, the maximum insertion loss of the device is 0.72 dB, and the lowest insertion loss is 0.543 dB at 1.55 μm, which is far lower than the general evaluation standard of 1 dB insertion loss. The low insertion loss also makes it possible to design cascaded multi-core photonic-crystal-fiber mode-division multiplexer. Compared with the existing mode-division multiplexing scheme, the device is more integrated and less affected by the external environment. When it is used with multi-core space division multiplexing fiber, it can better improve the mode-conversion efficiency and mode purity, reduce the coupling complexity and expand the communication capacity.
      Corresponding author: Li Jian-She, jianshelee@ysu.edu.cn
    • Funds: Project supported by the National Key Research and Development Project, China(Grant No. 2019YFB2204001), the National Natural Science Foundation of China (Grant No. 12074331), and the Program of the Natural Science Foundation of Hebei Province, China (Grant Nos. F2020203050, F2017203193)
    [1]

    Ryf R, Bolle C, von Hoyningen-Huene. J 2011 ECOC Geneva, Switzerland, SEP 18–22, 2011.

    [2]

    Wang Y L, Zhang C, Fu S N, Zhang R, Shen L, Tang M, Liu D M 2019 Opt Express 27 27979Google Scholar

    [3]

    Shi J 2013 M. S. Dissertation (Changchun: Jilin University) (in Chinese) 石健 2013 硕士学位论文(长春: 吉林大学)

    [4]

    Liu Q Q, Zheng H J, Li X, Bai C L, Hu W S, Yu R Y 2018 Optoelectron. Lett. 5 336

    [5]

    Tsekrekos C P, Syvridis D 2014 J. Lightwave Technol. 32 2461Google Scholar

    [6]

    Liu Y, Dong Q H, Zheng H J, Li X, Bai C L, Hu W S, Li Y L, Wang X 2020 Opt. Commun. 469

    [7]

    Park K J, Song K Y, Kim Y K, Kim B Y 2014 OFC San Francisco, CA, MAR 09–13, 2014.

    [8]

    Chang S H, Chung H S, Fontaine N K, Ryf R, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2014 Opt Express 22 14229Google Scholar

    [9]

    Pang M, Xiao L M, Jin W, Cerqueira A 2012 J. Lightwave Technology. 30 1422Google Scholar

    [10]

    侯建平, 宁韬, 盖双龙, 李鹏, 皓建苹, 赵建林 2010 物理学报 59 4732Google Scholar

    Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732Google Scholar

    [11]

    张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰 2010 物理学报 59 3278Google Scholar

    Zhang M Y, Li S G, Yao Y Y, Zhang L, Fu B, Yin G B 2010 Acta Phys. Sin. 59 3278Google Scholar

    [12]

    Yu Y Y, Sun B 2018 Crystals 8 95Google Scholar

    [13]

    Cardona J A M, Cardona N D G, Valencia, E G, Trujillo P T, Vera E R 2019 Photonics. 7 1Google Scholar

    [14]

    Zhang Y J, Wang Y, Cai S Y, Lan M Y, Yu S, Gu W Y 2015 Photonics Res. 3 220Google Scholar

    [15]

    Yang J 2017 M. S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [杨静 2017 硕士学位论文 (南京: 南京邮电大学)]

    [16]

    孙兵, 陈明阳, 周骏, 余学权, 张永康, 于荣金 2010 光学学报 6 1581

    Sun B, Chen M Y, Zhou J, Yu X Q, Zhang Y K, Yu R J 2010 Acta Optica Sinica 6 1581

    [17]

    Rifat A A, Mahdiraji G A, Shee Y G, Shawon M J, Adikan F R M 2016 Procedia. Eng. 140 1Google Scholar

    [18]

    Kaliteevskiy N A, Korolev A E, Koreshkov K S, Nazarov V N, Sterlingov P M 2013 Opt. Spectrosc. 114 913Google Scholar

    [19]

    Cai S Y, Yu S, Wang Y, Lan M Y, Gao L, Gu W Y 2016 PTL. 28 3Google Scholar

    [20]

    F. Bagci 2013 Opt. Pura. Apl. 46 265Google Scholar

    [21]

    季珂, 陈鹤鸣 2018 红外与毫米波学报 37 50Google Scholar

    Ji K, Chen H M 2018 J. Infrared Millim. W. 37 50Google Scholar

    [22]

    T. Joseph, J. John 2019 J. Op. t Soc. Amer. B. 36 1987Google Scholar

  • 图 1  (a)三芯光子晶体光纤模分复用器剖面结构; (b)分体设计的中心纤芯波导剖面结构; (c)分体设计的旁芯波导剖面结构

    Figure 1.  (a) Profile structure of three core PCF mode division multiplexer; (b) section structure of central core waveguide designed by split; (c) section structure of side core waveguide designed by split.

    图 2  中心纤芯中LP21和LP31模式的有效折射率以及两模式间的有效折射率差Δneff随传输波长的变化关系

    Figure 2.  The relationship between effective refractive index of LP21 and LP31 modes in central core, effective refractive index difference Δneff of two modes and the transmission wavelength.

    图 3  (a)不同d1条件下旁芯基模的有效折射率随波长的变化关系; (b)不同折射率差条件下旁芯基模的有效折射率随波长的变化关系

    Figure 3.  (a) The relationship between the effective refractive index of the side core mode and the wavelength under different d1 conditions; (b) the relationship between the effective refractive index of the side core mode and the wavelength under different refractive index difference of the doped rod.

    图 4  (a)不同d1, d2条件下旁芯基模的有效折射率随传输波长的变化关系; (b)1.55 μm波长下旁芯基模的有效折射率随掺杂棒折射率差的变化关系; (c)旁芯基模与中心纤芯各对应待转换模发生相位匹配

    Figure 4.  (a) The relationship between the effective refractive index of the side core fundamental mode and the transmission wavelength under different d1 and d2 conditions; (b) the relationship between the effective refractive index of the side core fundamental mode and the refractive index difference of the doped rod at 1.55 μm wavelength; (c) phase matching occurs between the basic mode of the side core and the corresponding mode to be converted of the central core.

    图 5  三维与二维绘图下的超模 (a) LP01-LP21奇模; (b) LP01-LP21偶模; (c) LP01-LP31奇模; (d) LP01-LP31偶模

    Figure 5.  Supermodes in 3D and 2D drawing groups: (a) LP01-LP21 odd mode (b) LP01-LP21 even mode (c) LP01-LP31 odd mode (d) LP01-LP31 even mode.

    图 6  功率监视器下的模式转换复用过程 (a)等高曲线绘图; (b)能量曲线绘图

    Figure 6.  Mode conversion multiplexing process under power monitor: (a) Contour plot; (b) energy plot

    图 7  (a)不同器件长度下的插入损耗随波长的变化关系; (b)不同器件长度下的高阶模转换效率随波长的变化关系

    Figure 7.  (a) Relationship between insertion loss and wavelength in different device lengths; (b) wavelength dependence of higher-order mode conversion efficiency for different device lengths.

    图 8  模分复用器的信号输入示意图

    Figure 8.  Schematic diagram of input signal of mode division multiplexer.

    表 1  本文所提出的模分复用器的特性与先前报导的器件间的对比.

    Table 1.  Comparison of the characteristics of the proposed mode division multiplexer with those of the previously reported devices.

    器件类型主要功能工作波段插入损耗模式转换效率器件长度制作难
    易度
    参考
    文献
    椭圆芯五模群选择性
    光子灯笼复用器
    10种空间模式的转换复用1530—1565 nm0.1—0.38 dB–0.79—0.19 dB锥区9 cm[2]
    三维对称少模光纤
    (FMF)耦合器
    6种模式的转换复用1530—1565 nm1.6 dB平均值–1.82 dB
    6.26 cm较难[3]
    少模环芯光纤模分
    多路复用器
    3种模式的转换复用1530—1565 nm < –1.39 dB3.23 cm较难[4]
    非对称双芯光子晶体光
    纤可调谐模式转换器
    可调谐, 单一模式的转换1278—1317 nm–0.043 dB(99%)3.15 mm容易[9]
    三芯全固体光子晶体
    光纤模式转换器
    3种模式的转换复用1550 nm–0.46 dB6.16 mm容易[10]
    非对称三芯光子晶体
    光纤宽带模分复用器
    3种模式的转换复用1490—1630 nm < 0.7 dB–0.19—1.2 dB4.9 mm较容易本文
    DownLoad: CSV
  • [1]

    Ryf R, Bolle C, von Hoyningen-Huene. J 2011 ECOC Geneva, Switzerland, SEP 18–22, 2011.

    [2]

    Wang Y L, Zhang C, Fu S N, Zhang R, Shen L, Tang M, Liu D M 2019 Opt Express 27 27979Google Scholar

    [3]

    Shi J 2013 M. S. Dissertation (Changchun: Jilin University) (in Chinese) 石健 2013 硕士学位论文(长春: 吉林大学)

    [4]

    Liu Q Q, Zheng H J, Li X, Bai C L, Hu W S, Yu R Y 2018 Optoelectron. Lett. 5 336

    [5]

    Tsekrekos C P, Syvridis D 2014 J. Lightwave Technol. 32 2461Google Scholar

    [6]

    Liu Y, Dong Q H, Zheng H J, Li X, Bai C L, Hu W S, Li Y L, Wang X 2020 Opt. Commun. 469

    [7]

    Park K J, Song K Y, Kim Y K, Kim B Y 2014 OFC San Francisco, CA, MAR 09–13, 2014.

    [8]

    Chang S H, Chung H S, Fontaine N K, Ryf R, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2014 Opt Express 22 14229Google Scholar

    [9]

    Pang M, Xiao L M, Jin W, Cerqueira A 2012 J. Lightwave Technology. 30 1422Google Scholar

    [10]

    侯建平, 宁韬, 盖双龙, 李鹏, 皓建苹, 赵建林 2010 物理学报 59 4732Google Scholar

    Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732Google Scholar

    [11]

    张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰 2010 物理学报 59 3278Google Scholar

    Zhang M Y, Li S G, Yao Y Y, Zhang L, Fu B, Yin G B 2010 Acta Phys. Sin. 59 3278Google Scholar

    [12]

    Yu Y Y, Sun B 2018 Crystals 8 95Google Scholar

    [13]

    Cardona J A M, Cardona N D G, Valencia, E G, Trujillo P T, Vera E R 2019 Photonics. 7 1Google Scholar

    [14]

    Zhang Y J, Wang Y, Cai S Y, Lan M Y, Yu S, Gu W Y 2015 Photonics Res. 3 220Google Scholar

    [15]

    Yang J 2017 M. S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [杨静 2017 硕士学位论文 (南京: 南京邮电大学)]

    [16]

    孙兵, 陈明阳, 周骏, 余学权, 张永康, 于荣金 2010 光学学报 6 1581

    Sun B, Chen M Y, Zhou J, Yu X Q, Zhang Y K, Yu R J 2010 Acta Optica Sinica 6 1581

    [17]

    Rifat A A, Mahdiraji G A, Shee Y G, Shawon M J, Adikan F R M 2016 Procedia. Eng. 140 1Google Scholar

    [18]

    Kaliteevskiy N A, Korolev A E, Koreshkov K S, Nazarov V N, Sterlingov P M 2013 Opt. Spectrosc. 114 913Google Scholar

    [19]

    Cai S Y, Yu S, Wang Y, Lan M Y, Gao L, Gu W Y 2016 PTL. 28 3Google Scholar

    [20]

    F. Bagci 2013 Opt. Pura. Apl. 46 265Google Scholar

    [21]

    季珂, 陈鹤鸣 2018 红外与毫米波学报 37 50Google Scholar

    Ji K, Chen H M 2018 J. Infrared Millim. W. 37 50Google Scholar

    [22]

    T. Joseph, J. John 2019 J. Op. t Soc. Amer. B. 36 1987Google Scholar

  • [1] Design and research of a broadband mode division multiplexer based on three core photonic crystal fiber. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211187
    [2] Dai Zhen-Fei, Jiang Wen-Fan, Wang Ling, Chen Ming-Yang, Gao Yong-Feng, Ren Nai-Fei. Tunable mode-selective characteristics of a mode-filter petal-fiber with liquid rods. Acta Physica Sinica, 2019, 68(8): 084206. doi: 10.7498/aps.68.20181890
    [3] Zhao Nan, Chen Gui, Wang Yi-Bo, Peng Jing-Gang, Li Jin-Yan. Double-clad large-mode-area polarization-maintaining ytterbium doped photonic crystal fiber. Acta Physica Sinica, 2014, 63(2): 024202. doi: 10.7498/aps.63.024202
    [4] Han Bo-Lin, Lou Shu-Qin, Lu Wen-Liang, Su Wei, Zou Hui, Wang Xin. Novel ultra-broadband polarization beam splitter based on dual-core photonic crystal fiber. Acta Physica Sinica, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [5] Wang Xin, Lou Shu-Qin, Lu Wen-Liang. Novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Acta Physica Sinica, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [6] Sheng Xin-Zhi, Lou Shu-Qin, Yin Guo-Lu, Lu Wen-Liang, Wang Xin. A high-compatibility low-bending-loss photonic crystal fiber with standard single mode fiber. Acta Physica Sinica, 2013, 62(10): 104217. doi: 10.7498/aps.62.104217
    [7] Lou Shu-Qin, Lu Wen-Liang, Wang Xin. A novel bend-resistant large-mode-area photonic crystal fiber. Acta Physica Sinica, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [8] Zhang Da-Peng, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking. Acta Physica Sinica, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [9] Chen Gui, Jiang Zuo-Wen, Peng Jing-Gang, Li Hai-Qing, Dai Neng-Li, Li Jin-Yan. Study of air-clad large-mode-area ytterbium doped photonic crystal fiber. Acta Physica Sinica, 2012, 61(14): 144206. doi: 10.7498/aps.61.144206
    [10] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [11] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [12] Guo Yan-Yan, Hou Lan-Tian. Design of all-solid octagon photonic crystal fiber with large mode area. Acta Physica Sinica, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [13] Song You-Jian, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. Approaching 100 nJ pulse energy output from a mode-locked photonic crystal fiber laser. Acta Physica Sinica, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [14] Zhang Xin, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Dissipative-soliton mode locked laser based on large-mode-area photonic crystal fiber. Acta Physica Sinica, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [15] Han Wei-Tao, Hou Lan-Tian, Geng Peng-Cheng. Numerical and experimental study on coherent combining of double cladding multi-core photonic crystal fiber. Acta Physica Sinica, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [16] Zhang Chi, Hu Ming-Lie, Song You-Jian, Zhang Xin, Chai Lu, Wang Qing-Yue. An Yb-doped large-mode-area photonic crystal fiber mode-locking laser with free output coupler. Acta Physica Sinica, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [17] Liao Zai-Yi, Zhao Ling-Juan, Zhang Yun-Xiao, Bian Jing, Pan Jiao-Qing, Wang Wei. A method to analyze insertion loss of electroabsorption-modulator using photocurrent and power transmission vs.wavelength. Acta Physica Sinica, 2009, 58(5): 3135-3139. doi: 10.7498/aps.58.3135
    [18] Song You-Jian, Hu Ming-Lie, Liu Bo-Wen, Chai Lu, Wang Qing-Yue. High energy femtosecond soliton mode-locking laser based on Yb-doped single polarization large-mode-area photonic crystal fiber. Acta Physica Sinica, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [19] Li Shu-Guang, Xing Guang-Long, Zhou Gui-Yao, Hou Lan-Tian. Numerical simulation of square-lattice photonic crystal fiber with high birefringence and low confinement loss. Acta Physica Sinica, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [20] Li Hong-Cheng, Wang Rui-Lan, Wei Bin, Zheng Dong-Ning. Contributions of the surface resistance of high-temperature superconducting films to the insertion loss of the microwave filters. Acta Physica Sinica, 2005, 54(1): 359-363. doi: 10.7498/aps.54.359
Metrics
  • Abstract views:  5450
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  24 June 2021
  • Accepted Date:  21 October 2021
  • Available Online:  12 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回