Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable mode-selective characteristics of a mode-filter petal-fiber with liquid rods

Dai Zhen-Fei Jiang Wen-Fan Wang Ling Chen Ming-Yang Gao Yong-Feng Ren Nai-Fei

Citation:

Tunable mode-selective characteristics of a mode-filter petal-fiber with liquid rods

Dai Zhen-Fei, Jiang Wen-Fan, Wang Ling, Chen Ming-Yang, Gao Yong-Feng, Ren Nai-Fei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this paper, a novel tunable mode-filter optical fiber consisting of a high-index core and petal-shaped cladding surrounded by a high-index outer ring is proposed. The cladding of the fiber is formed with periodically arranged liquid rods that support cladding modes with effective indexes. These cladding modes form a two-super-mode group. The mode-selection is realized by the coupling between the core mode and the super-mode group. With the petal-shaped cladding, cladding mode can be transmitted at high loss. With the liquid rods, the index-band of super-mode group can be adjusted by external temperature field, thereby achieving the purpose of tunable mode-selective. The super-mode group formed by the LP11 mode of the liquid rods effectively increases its operating bandwidth and temperature tuning range. The numerical simulation results show that the mode-filter fiber with a length of only 71.4 mm can achieve a particular mode loss more than 20 dB, while other modes’ losses are below 1 dB. This special fiber can be used as a mode-filter in the few-mode fiber transmission system to reduce mode crosstalk of converters, multiplexer/demultiplexer, optical switch and optical routing.
      Corresponding author: Chen Ming-Yang, miniyoung@163.com
    • Funds: Project supported by the Key Research and Development Projects (Industry Foresight and Common Key Technologies) of Zhenjiang, China (Grant No. GY2015033) and the Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, Jiangsu University, China (Grant No. SS2018001).
    [1]

    Turukhin A, Sinkin O V, Batshon H G, Zhang H, Sun Y, Mazurczyk M, Davidson C R, Cai J X, Bolshtyansky M A, Foursa D G, Pilipetskii A 2016 Proceedings of Optical Fiber Communications Conference and Exhibition (OFC 2016) Anaheim, California, USA. March 20−24, 2016

    [2]

    Hong X, Zeng X, Li Y, Mo Q, Tian Y, Li W, Liu Z, Wu J 2016 Appl. Opt. 55 9360Google Scholar

    [3]

    姚殊畅, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215Google Scholar

    Yao X C, Zhang M M, Tang M, Sheng P, Liu D M 2013 Acta Phys. Sin. 62 144215Google Scholar

    [4]

    Koebele C, Salsi M, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Cerou F, Charlet G 2011 Opt. Express 19 16593Google Scholar

    [5]

    Sarmiento S, Altabas J A, Izquierdo D, Garces I, Spadaro S, Lazaro J A 2017 J. Opt. Commun. Netw. 9 1116Google Scholar

    [6]

    Ramachandran S, Fini J M, Mermelstein M, Nicholson J W, Ghalmi S, Yan M F 2008 Laser Photon. Rev. 2 429Google Scholar

    [7]

    Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M 2013 Opt. Lett. 38 1854Google Scholar

    [8]

    Nobutomo H, Kuimasa S, Taiji S, Takashi M, Kyozo T, Masanori K, Fumihiko 2013 Opt. Express 21 25752Google Scholar

    [9]

    Riesen N, Love J D 2012 Appl. Opt. 51 2778Google Scholar

    [10]

    Saitoh F, Saitoh K, Koshiba M 2010 Opt. Express 18 4709Google Scholar

    [11]

    Yu C P, Liou J H, Chiu Y J, Taga 2011 Opt. Express 19 12673Google Scholar

    [12]

    Tsekrekos C P, Syvridis, 2012 IEEE Photonic Tech. L. 24 1638Google Scholar

    [13]

    Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2015 Opt. Express 23 7164Google Scholar

    [14]

    Chang S H, Moon S R, Chen H, Fontaine N K, Park K J, Kim K, Lee J K 2017 Opt. Express 25 5734Google Scholar

    [15]

    Pureur V, Knight J C, Kuhlmey B T 2010 Opt. Express 18 8906Google Scholar

    [16]

    Park K J, Song K Y, Kim Y K, Lee J H, Kim B Y 2016 Opt. Express 24 3543Google Scholar

    [17]

    Yerolatsitis S, Harrington K, Thomson R R, Birks T A 2017 Optical Fiber Communications Conference and Exhibition (Ofc 2017) Los Angeles, California, USA. March 19−23

    [18]

    Velazquez-Benitez A M, Alvarado J C, Lopez-Galmiche G, Antonio-Lopez J E, Hernandez-Cordero J, Sanchez-Mondragon J, Sillard P, Okonkwo C M, Amezcua-Correa R 2015 Opt. Lett. 40 1663Google Scholar

    [19]

    Sai X, Li Y, Yang C, Li W, Qiu J, Hong X, Zuo Y, Guo H, Tong W, Wu J 2017 Opt. Lett. 42 4355Google Scholar

    [20]

    Chen M Y, Chiang K S 2016 IEEE J. Sel. Top. Quant. 22 4900307

    [21]

    姚建铨, 王然, 苗银萍, 陆颖, 赵晓蕾, 景磊 2013 中国激光 40 0101002

    Yao J Q, Wang R, Miao Y P, Lu Y, Zhao X L, Jin L 2013 Chinese J. Lasers 40 0101002

    [22]

    吴倩, 郭晓晨, 施伟华 2018 物理学报 67 184212Google Scholar

    Wu Q, Guo X C, Shi W H 2018 Acta Phys. Sin. 67 184212Google Scholar

    [23]

    Qi T, Jung Y, Xiao L, Wang J, Xiao S, Lu C, Tam H Y, Peacock A C 2016 Opt. Lett. 41 4763Google Scholar

    [24]

    程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延 2014 物理学报 63 074210Google Scholar

    Cheng L, Luo X, Wei H F, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 074210Google Scholar

    [25]

    Stone J M, Pearce G J, Luan F, Birks T A, Knight J C, George A K, Bird D M 2006 Opt. Express 14 6291Google Scholar

    [26]

    Argyros A, Birks T A, Leon-Saval S G, Cordeiro C M B, Russell P S 2005 Opt. Express 13 2503Google Scholar

    [27]

    Park J, Kang D E, Paulson B, Nazari T, Oh K 2014 Opt. Express 22 17320Google Scholar

    [28]

    Dimitropoulos D, Houshmand B, Claps R, Jalali B 2003 Opt. Lett. 28 1954Google Scholar

    [29]

    Poon J, Istrate E, Allard M, Sargent E H 2003 IEEE J. Sel. Top. Quant. 39 778Google Scholar

    [30]

    Samoc A 2003 J. Appl. Phys. 94 6167Google Scholar

    [31]

    Zhang R, Teipel J, Giessen H 2006 Opt. Express 14 6800Google Scholar

    [32]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318Google Scholar

    [33]

    Liu Y Q, Guo Z Y, Zhang Y, Chiang K S, Dong X Y 2000 Electron. Lett. 36 56

  • 图 1  花瓣形MOF结构

    Figure 1.  Petal-shape structure of MOF.

    图 2  ${n_{{\rm{core}}}} = 1.464$时, 图1中MOF的纤芯4种模式和2个包层超模群区间的色散特性

    Figure 2.  Dispersion characteristics of the two cladding super-mode band and the four core modes for the MOF shown in Fig.1, when ${n_{{\rm{core}}}} = 1.464$.

    图 3  波长$\lambda = 1550\;{\rm{ nm}}$时, 纤芯模式的模场分布图 (a) LP01模; (b) LP11模; (c) LP11模; (d) LP02

    Figure 3.  Field distributions of the core-mode at the wavelength $\lambda = 1550\;{\rm{ nm}}$: (a) The LP01 mode; (b) the LP11 mode; (c) the LP21 mode; (d) the LP02 mode.

    图 4  波长1550 nm时, 超模群区间随液体介质柱折射率(温度)变化曲线

    Figure 4.  Variation of super-mode band with liquid-rod index change at the wavelength 1550 nm.

    图 5  考虑和不考虑液体吸收损耗两种情况下的纤芯LP01模和LP11模损耗曲线

    Figure 5.  Variation of the core-mode LP01 mode and LP11 mode loss with and without liquid absorption loss.

    图 6  纤芯四种模式单独处于超模群区间时损耗曲线 (a) LP01模; (b) LP11模; (c) LP21模; (d) LP02

    Figure 6.  The loss of single core-mode on the super-mode band: (a) The LP01 mode; (b) the LP11 mode; (c) the LP21 mode; (d) the LP02 mode.

    图 7  不同液体折射率时, 四种纤芯模式的损耗曲线 (a) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4937}}$; (b) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4892}}$; (c) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.486}}$; (d)${n_{{\rm{liquid}}}}$ = 1.4812

    Figure 7.  The loss of four core-mode with various liquid index: (a) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4937}}$; (b) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4892}}$; (c) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.486}}$; (d) ${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4812}}$.

    图 8  不同结构光纤的LP01模的模场分布 (a)圆形结构; (b)花瓣结构

    Figure 8.  Field distributions of LP01 mode with various circle structures: (a) Circle structure; ( b) petal-shape structure.

    图 9  两种MOF的模式损耗对比 (a) LP01模和LP11模损耗曲线; (b) LP21模和LP02模曲线

    Figure 9.  Loss of two MOF: (a) Loss band of the LP01 mode and LP11 mode; (b) loss band of the LP21 mode and LP02 mode.

    图 10  纤芯 LP01模式在双超模群时的两种超模群区间LP01模损耗 (a)波长为1550 nm, 温度改变量相同; (b)温度相同, 波长改变

    Figure 10.  Dependence of the loss of the core LP01 mode locating in different two super-mode region: (a) With same temperature variation at wavelength 1550 nm; (b) with various wavelength at the same temperature.

  • [1]

    Turukhin A, Sinkin O V, Batshon H G, Zhang H, Sun Y, Mazurczyk M, Davidson C R, Cai J X, Bolshtyansky M A, Foursa D G, Pilipetskii A 2016 Proceedings of Optical Fiber Communications Conference and Exhibition (OFC 2016) Anaheim, California, USA. March 20−24, 2016

    [2]

    Hong X, Zeng X, Li Y, Mo Q, Tian Y, Li W, Liu Z, Wu J 2016 Appl. Opt. 55 9360Google Scholar

    [3]

    姚殊畅, 张敏明, 唐明, 沈平, 刘德明 2013 物理学报 62 144215Google Scholar

    Yao X C, Zhang M M, Tang M, Sheng P, Liu D M 2013 Acta Phys. Sin. 62 144215Google Scholar

    [4]

    Koebele C, Salsi M, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Cerou F, Charlet G 2011 Opt. Express 19 16593Google Scholar

    [5]

    Sarmiento S, Altabas J A, Izquierdo D, Garces I, Spadaro S, Lazaro J A 2017 J. Opt. Commun. Netw. 9 1116Google Scholar

    [6]

    Ramachandran S, Fini J M, Mermelstein M, Nicholson J W, Ghalmi S, Yan M F 2008 Laser Photon. Rev. 2 429Google Scholar

    [7]

    Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M 2013 Opt. Lett. 38 1854Google Scholar

    [8]

    Nobutomo H, Kuimasa S, Taiji S, Takashi M, Kyozo T, Masanori K, Fumihiko 2013 Opt. Express 21 25752Google Scholar

    [9]

    Riesen N, Love J D 2012 Appl. Opt. 51 2778Google Scholar

    [10]

    Saitoh F, Saitoh K, Koshiba M 2010 Opt. Express 18 4709Google Scholar

    [11]

    Yu C P, Liou J H, Chiu Y J, Taga 2011 Opt. Express 19 12673Google Scholar

    [12]

    Tsekrekos C P, Syvridis, 2012 IEEE Photonic Tech. L. 24 1638Google Scholar

    [13]

    Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2015 Opt. Express 23 7164Google Scholar

    [14]

    Chang S H, Moon S R, Chen H, Fontaine N K, Park K J, Kim K, Lee J K 2017 Opt. Express 25 5734Google Scholar

    [15]

    Pureur V, Knight J C, Kuhlmey B T 2010 Opt. Express 18 8906Google Scholar

    [16]

    Park K J, Song K Y, Kim Y K, Lee J H, Kim B Y 2016 Opt. Express 24 3543Google Scholar

    [17]

    Yerolatsitis S, Harrington K, Thomson R R, Birks T A 2017 Optical Fiber Communications Conference and Exhibition (Ofc 2017) Los Angeles, California, USA. March 19−23

    [18]

    Velazquez-Benitez A M, Alvarado J C, Lopez-Galmiche G, Antonio-Lopez J E, Hernandez-Cordero J, Sanchez-Mondragon J, Sillard P, Okonkwo C M, Amezcua-Correa R 2015 Opt. Lett. 40 1663Google Scholar

    [19]

    Sai X, Li Y, Yang C, Li W, Qiu J, Hong X, Zuo Y, Guo H, Tong W, Wu J 2017 Opt. Lett. 42 4355Google Scholar

    [20]

    Chen M Y, Chiang K S 2016 IEEE J. Sel. Top. Quant. 22 4900307

    [21]

    姚建铨, 王然, 苗银萍, 陆颖, 赵晓蕾, 景磊 2013 中国激光 40 0101002

    Yao J Q, Wang R, Miao Y P, Lu Y, Zhao X L, Jin L 2013 Chinese J. Lasers 40 0101002

    [22]

    吴倩, 郭晓晨, 施伟华 2018 物理学报 67 184212Google Scholar

    Wu Q, Guo X C, Shi W H 2018 Acta Phys. Sin. 67 184212Google Scholar

    [23]

    Qi T, Jung Y, Xiao L, Wang J, Xiao S, Lu C, Tam H Y, Peacock A C 2016 Opt. Lett. 41 4763Google Scholar

    [24]

    程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延 2014 物理学报 63 074210Google Scholar

    Cheng L, Luo X, Wei H F, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 074210Google Scholar

    [25]

    Stone J M, Pearce G J, Luan F, Birks T A, Knight J C, George A K, Bird D M 2006 Opt. Express 14 6291Google Scholar

    [26]

    Argyros A, Birks T A, Leon-Saval S G, Cordeiro C M B, Russell P S 2005 Opt. Express 13 2503Google Scholar

    [27]

    Park J, Kang D E, Paulson B, Nazari T, Oh K 2014 Opt. Express 22 17320Google Scholar

    [28]

    Dimitropoulos D, Houshmand B, Claps R, Jalali B 2003 Opt. Lett. 28 1954Google Scholar

    [29]

    Poon J, Istrate E, Allard M, Sargent E H 2003 IEEE J. Sel. Top. Quant. 39 778Google Scholar

    [30]

    Samoc A 2003 J. Appl. Phys. 94 6167Google Scholar

    [31]

    Zhang R, Teipel J, Giessen H 2006 Opt. Express 14 6800Google Scholar

    [32]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318Google Scholar

    [33]

    Liu Y Q, Guo Z Y, Zhang Y, Chiang K S, Dong X Y 2000 Electron. Lett. 36 56

  • [1] Wang Xiao-Kai, Li Jian-She, Li Shu-Guang, Guo Ying, Meng Xiao-Jian, Wang Guo-Rui, Wang Lu-Yao, Li Zeng-Hui, Zhao Yuan-Yuan, Ding Yu-Xin. Design and research of a broadband mode-division multiplexer based on three-core photonic crystal fiber. Acta Physica Sinica, 2022, 71(4): 044206. doi: 10.7498/aps.71.20211187
    [2] Ding Zi-Ping, Liao Jian-Fei, Zeng Ze-Kai. A new type of ultra-broadband microstructured fiber sensor based on surface plasmon resonance. Acta Physica Sinica, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [3] Design and research of a broadband mode division multiplexer based on three core photonic crystal fiber. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211187
    [4] Dong Li-Juan, Xue Chun-Hua, Sun Yong, Deng Fu-Sheng, Shi Yun-Long. Loss-induced localized field enhancement and optical bistable state in heterostructure containing single-negative materials. Acta Physica Sinica, 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [5] Chen Qi-Jie, Zhou Gui-Yao, Shi Fu-Kun, Li Duan-Ming, Yuan Jin-Hui, Xia Chang-Ming, Ge Shu. Study of near-infrared dispersion wave generation for microstructured fiber. Acta Physica Sinica, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [6] Xu Min-Nan, Zhou Gui-Yao, Chen Cheng, Hou Zhi-Yun, Xia Chang-Ming, Zhou Gai, Liu Hong-Zhan, Liu Jian-Tao, Zhang Wei. Analysis of a novel four-mode micro-structured fiber with low-level crosstalk and high mode differential group delay. Acta Physica Sinica, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [7] Chen Yan, Zhou Gui-Yao, Xia Chang-Ming, Hou Zhi-Yun, Liu Hong-Zhan, Wang Chao. Analysis of a novel dual-mode large-mode-area micro-structured fiber. Acta Physica Sinica, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [8] Cheng Lan, Luo Xing, Wei Hui-Feng, Li Hai-Qing, Peng Jing-Gang, Dai Neng-Li, Li Jin-Yan. Study of 1550 nm low loss single mode all-solid photonic bandgap fibers. Acta Physica Sinica, 2014, 63(7): 074210. doi: 10.7498/aps.63.074210
    [9] Miao Yin-Ping, Yao Jian-Quan. Temperature sensitivity of microstructured optical fiber filled with ferrofluid. Acta Physica Sinica, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [10] Zhou Ya-Xun, Yu Xing-Yan, Xu Xing-Chen, Dai Shi-Xun. Fabrication of erbium-doped chalcogenide glass and study on mid-IR amplifying characteristics of its microstructured fiber. Acta Physica Sinica, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [11] Yan Hai-Feng, Yu Zhong-Yuan, Tian Hong-Da, Liu Yu-Min, Han Li-Hong. Investigation on propagation and nonlinearity of an octagonal photonic crystal fiber. Acta Physica Sinica, 2010, 59(5): 3273-3277. doi: 10.7498/aps.59.3273
    [12] Han Wei-Tao, Hou Lan-Tian, Geng Peng-Cheng. Numerical and experimental study on coherent combining of double cladding multi-core photonic crystal fiber. Acta Physica Sinica, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [13] Ji Ling-Ling, Lu Pei-Xiang, Chen Wei, Dai Neng-Li, Zhang Ji-Huang, Jiang Zuo-Wen, Li Jin-Yan, Li Wei. Four-wave-mixing process in secondary cores of a microstructured fiber. Acta Physica Sinica, 2008, 57(9): 5973-5977. doi: 10.7498/aps.57.5973
    [14] Zhou Gui-Yao, Hou Zhi-Yun, Li Shu-Guang, Han Ying, Hou Lan-Tian. Analysis of the shrinkage in size of air holes in different sections during the fabrication of microstructured fibre. Acta Physica Sinica, 2007, 56(11): 6486-6489. doi: 10.7498/aps.56.6486
    [15] Wang Jian, Lei Nai-Guang, Yu Chong-Xiu. Analysis of confinement loss in microstructured optical fibers with elliptical air holes. Acta Physica Sinica, 2007, 56(2): 946-951. doi: 10.7498/aps.56.946
    [16] Zhou Gui-Yao, Hou Zhi-Yun, Pan Pu-Feng, Hou Lan-Tian, Li Shu-Guang, Han Ying. Temperature distribution of microstructure fiber preform during fiber drawing. Acta Physica Sinica, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [17] Zhang Chun-Shu, Kai Gui-Yun, Wang Zhi, Wang Chao, Sun Ting-Ting, Zhang Wei-Gang, Liu Yan-Ge, Liu Jian-Fei, Yuan Shu-Zhong, Dong Xiao-Yi. Temperature and strain sensing property of grapefruit microstructure fiber Bragg grating. Acta Physica Sinica, 2005, 54(6): 2758-2763. doi: 10.7498/aps.54.2758
    [18] Li Shu-Guang, Zhou Gui-Yao, Xing Guang-Long, Hou Lan-Tian, Wang Qing-Yue, Li Yan-Feng, Hu Ming-Lie. Numerical simulation on ultrashort laser pulses propagating in microstructure fi bers. Acta Physica Sinica, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [19] Hu Ming-Lie, Wang Qing-Yue, Li Yan-Feng, Wang Zhuan, Chai Lu, Zhang Wei-Li. Mode-controlled four-wave-mixing in the birefringent microstructure fiber by femtosecond laser pulses. Acta Physica Sinica, 2005, 54(9): 4411-4415. doi: 10.7498/aps.54.4411
    [20] Hu Ming-Lie, Wang Qing-Yue, Li Yan-Feng, Ni XiaoChang, Zhang Zhi-Gang, Wang Zhuan, Chai Lu, Hou Lan-Tian, Li Shu-Guang, Zhou Gui-Yao. Birefringence phenomena in a random distributed microstructure fiber. Acta Physica Sinica, 2004, 53(12): 4248-4252. doi: 10.7498/aps.53.4248
Metrics
  • Abstract views:  10463
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2018
  • Accepted Date:  23 January 2019
  • Available Online:  01 April 2019
  • Published Online:  20 April 2019

/

返回文章
返回