搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于五模材料的圆柱声隐身斗篷坐标变换设计

陆智淼 蔡力 温激鸿 温熙森

引用本文:
Citation:

基于五模材料的圆柱声隐身斗篷坐标变换设计

陆智淼, 蔡力, 温激鸿, 温熙森

Research on coordinate transformation design of a cylinderical acoustic cloak with pentamode materials

Lu Zhi-Miao, Cai Li, Wen Ji-Hong, Wen Xi-Sen
PDF
导出引用
  • 五模超材料具有与流体相似的物理性质,为各向异性流体的物理实现提供了途径,因此Norris提出了将其用于声隐声斗篷设计的思路. 本文对Norris五模超材料声隐声斗篷设计中提出的坐标变换方程进行研究,利用有限元方法对不同坐标变换下声隐声斗篷的平均可视度进行数值计算,分析了五模超材料斗篷的隐身性能影响因素及规律. 结果表明,通过选取不同的坐标变换方程改变其物性参数分布,能够调节斗篷中的声波传播路径,对声隐声斗篷的声散射特性产生明显影响. 因此,选择合适的坐标变换方程能够有效改善隐身性能.
    The pentamode material, similar to fluid in physical properties, serves as a useful way for the physical implementation of the anisotropic fluid. Based on the similarity, a method to design cloak with the pentamode materials has been put forward by Norris. To analyze the effect factors and rules of the stealth performance of the cloak, the present article is focused on the studying of the coordinate transformation equation of the pentamode cloak design of Norris. Cloaks with different materials parameters distribution can be achieved by adjusting coordinate transformation equations. There are four kinds of the distribution of pentamode cloak material parameters: the density equation being constant, the modulus equation being constant, the density equation being, power equation and the modulus equation being power equation. The average visibility is considered as the standard of stealth effect and is calculated with different coordinate transformation equations by using the software COMSOL. The average visibility is used to analyze the relationship between stealth effect and coordinate transformation equations. The relationship between the coordinate transformation equation and the route of acoustic wave transmission, the relationship between the materials of obstacle and the stealth effect, and the relationship between the route of acoustic wave transmission and the stealth effect are studied. Two results are achieved by comparing these relationships mentioned above. The first is that the stealth effect of a cloak with aluminum obstacle is worse than one with water obstacle. The reason lies in the impedance mismatch between the aluminum and the cloak material. The second result shows that the coordinate transformation equation is related to the distribution of material parameters and the route of acoustic wave transmission and it can affect the scattering property of the cloak. When the route of acoustic wave transmission is close to inner surface of cloak, the stealth effect is relatively poor, while when the route of acoustic wave transmission is close to outer surface of cloak, the stealth effect is relatively well. The reason is that when the route of acoustic wave transmission is close to inner surface of cloak, the acoustic wave affects the obstacle which leads to the enhancement of the scattering of obstacle. So when designing the cloak, not only the physical realization of the cloak material but also the distributed situation of the route of acoustic wave transmission should be considered. And the route of acoustic wave transmission is decided by the coordinate transformation equation. Therefore the stealth performance can be improved by applying proper coordinate transformation equation.
      通信作者: 温激鸿, wenjihong@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号:51275519)资助的课题.
      Corresponding author: Wen Ji-Hong, wenjihong@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275519).
    [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 248

    [3]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001

    [4]

    Cummer S A, Schurig D 2007 New J. Phys. 9 45

    [5]

    Norris A N 2008 Proc. R. Soc. 464 2411

    [6]

    Tian H W 2013 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese) [田华文 2007 硕士学位论文(长沙: 国防科技大学)]

    [7]

    Maldovan M 2013 Nature 503 209

    [8]

    Gao D B, Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese) [高东宝, 曾新吾 2012 物理学报 61 184301]

    [9]

    Hu J, Zhou X M, Hu G K 2009 ASME 2009 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineerings, USA

    [10]

    Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303 (in Chinese) [沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森 2012 物理学报 61 134303]

    [11]

    Torrent D, Snchez-Dehesa J 2008 New J. Phys. 10 063015

    [12]

    Zhang S, Xia C G, Fang N 2011 Phys Rev. Lett. 106 024301

    [13]

    Sanchis L, Garcia-chocano V M, Liopis-Pontivero S R 2013 Phys. Rev. Lett. 110 124301

    [14]

    Cheng Y, Liu X J 2009 Appl. Phys. A 94 25

    [15]

    Norris A N, Nagy J A 2010 J. Acoust. Soc. Am. 120 1606

    [16]

    Norris A N, Nagy J A 2011 Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics Santa Fe, New Mexico, USA, May 29-June 2, 2011 p112

    [17]

    Milton G W, Cherkaev A V 1995 J. Eng. Mater. Technol. 117 483

    [18]

    Hladky-Hennion C A, Vasseur O J, Haw G, Croenne C, Haumesser L, Norris N A 2013 Appl Phys. Lett. 102 14413

    [19]

    Layman N C, Naify J C, Martin P T, Calvo C D, Orris J G 2012 Phys. Rev. Lett. 111 024302

    [20]

    Martin A, Kadic M, Schittny R, Buckmann T, Wegener M 2012 Phys. Rev. B 86 155116

    [21]

    Nagy A J 2015 Ph. D. Dissertation (New Jersey: Rutgers University)

    [22]

    Yi H, Wang X M, Mei Y L 2015 Chin. J. Sol. Mech. 36 4 (in Chinese) [易辉, 王晓明, 梅玉林 2015 固体力学学报 36 4]

    [23]

    Cai C X, Wang Z H, Li Q W, Xu Z, Tian X G 2015 J. Phys. D: Appl. Phys. 48 175103

    [24]

    Kadic M, Bukmann T, Schittny R, Gumbsch P, Wegener M 2014 Phys. Rev. A 2 054007

    [25]

    Zhang Y L 2014 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [张迎龙 2014 硕士学位论文(大连: 大连理工大学)]

    [26]

    Bckmann T, Kadic M, Schittny R, Wegener M 2015 Proc. Natl. Acad. Sci. 16 112

    [27]

    Huang Y, Lu X G, Liang G Y, Xu Z 2016 Phys. Lett. A 380 1334

    [28]

    Scandrett L C, Boisvert E J, Howarth R T 2010 J. Acoust. Soc. Am. 127 2856

    [29]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906

    [30]

    Chen Y, Liu X N, Hu G K 2015 Sci. Rep. 5 15745

    [31]

    Chen Y, Liu X N, Xiang P, Hu G K 2016 Advances in Mechanics 46 201609 (in Chinese) [陈毅, 刘晓宁, 向平, 胡更开 2016 力学进展 46 201609]

    [32]

    Zhang X D, Chen H, Wang L, Zhao Z G, Zhao A G 2015 Acta Phys. Sin. 64 134303 (in Chinese) [张向东, 陈虹, 王磊, 赵志高, 赵爱国 2015 物理学报 64 134303]

    [33]

    Gokhale H N, Cipolla L J, Norris N A 2012 Special Issue of J. Acoustic. Soc. Am. 127 2856

    [34]

    Cheng Y, Yang F, Xu J Y, Liu X J 2008 Appl. Phys. Lett. 92 151913

    [35]

    Cheng Y, Liu X J 2008 J. Appl. Phys. 104 104911

    [36]

    Torrent D, Snchez-Dehesa J 2011 Wave Motion 6 48

    [37]

    Cai L W, Snchez-Dehesa J 2012 J. Acoust. Soc. Am. 4 132

  • [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 248

    [3]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001

    [4]

    Cummer S A, Schurig D 2007 New J. Phys. 9 45

    [5]

    Norris A N 2008 Proc. R. Soc. 464 2411

    [6]

    Tian H W 2013 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese) [田华文 2007 硕士学位论文(长沙: 国防科技大学)]

    [7]

    Maldovan M 2013 Nature 503 209

    [8]

    Gao D B, Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese) [高东宝, 曾新吾 2012 物理学报 61 184301]

    [9]

    Hu J, Zhou X M, Hu G K 2009 ASME 2009 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineerings, USA

    [10]

    Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303 (in Chinese) [沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森 2012 物理学报 61 134303]

    [11]

    Torrent D, Snchez-Dehesa J 2008 New J. Phys. 10 063015

    [12]

    Zhang S, Xia C G, Fang N 2011 Phys Rev. Lett. 106 024301

    [13]

    Sanchis L, Garcia-chocano V M, Liopis-Pontivero S R 2013 Phys. Rev. Lett. 110 124301

    [14]

    Cheng Y, Liu X J 2009 Appl. Phys. A 94 25

    [15]

    Norris A N, Nagy J A 2010 J. Acoust. Soc. Am. 120 1606

    [16]

    Norris A N, Nagy J A 2011 Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics Santa Fe, New Mexico, USA, May 29-June 2, 2011 p112

    [17]

    Milton G W, Cherkaev A V 1995 J. Eng. Mater. Technol. 117 483

    [18]

    Hladky-Hennion C A, Vasseur O J, Haw G, Croenne C, Haumesser L, Norris N A 2013 Appl Phys. Lett. 102 14413

    [19]

    Layman N C, Naify J C, Martin P T, Calvo C D, Orris J G 2012 Phys. Rev. Lett. 111 024302

    [20]

    Martin A, Kadic M, Schittny R, Buckmann T, Wegener M 2012 Phys. Rev. B 86 155116

    [21]

    Nagy A J 2015 Ph. D. Dissertation (New Jersey: Rutgers University)

    [22]

    Yi H, Wang X M, Mei Y L 2015 Chin. J. Sol. Mech. 36 4 (in Chinese) [易辉, 王晓明, 梅玉林 2015 固体力学学报 36 4]

    [23]

    Cai C X, Wang Z H, Li Q W, Xu Z, Tian X G 2015 J. Phys. D: Appl. Phys. 48 175103

    [24]

    Kadic M, Bukmann T, Schittny R, Gumbsch P, Wegener M 2014 Phys. Rev. A 2 054007

    [25]

    Zhang Y L 2014 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [张迎龙 2014 硕士学位论文(大连: 大连理工大学)]

    [26]

    Bckmann T, Kadic M, Schittny R, Wegener M 2015 Proc. Natl. Acad. Sci. 16 112

    [27]

    Huang Y, Lu X G, Liang G Y, Xu Z 2016 Phys. Lett. A 380 1334

    [28]

    Scandrett L C, Boisvert E J, Howarth R T 2010 J. Acoust. Soc. Am. 127 2856

    [29]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906

    [30]

    Chen Y, Liu X N, Hu G K 2015 Sci. Rep. 5 15745

    [31]

    Chen Y, Liu X N, Xiang P, Hu G K 2016 Advances in Mechanics 46 201609 (in Chinese) [陈毅, 刘晓宁, 向平, 胡更开 2016 力学进展 46 201609]

    [32]

    Zhang X D, Chen H, Wang L, Zhao Z G, Zhao A G 2015 Acta Phys. Sin. 64 134303 (in Chinese) [张向东, 陈虹, 王磊, 赵志高, 赵爱国 2015 物理学报 64 134303]

    [33]

    Gokhale H N, Cipolla L J, Norris N A 2012 Special Issue of J. Acoustic. Soc. Am. 127 2856

    [34]

    Cheng Y, Yang F, Xu J Y, Liu X J 2008 Appl. Phys. Lett. 92 151913

    [35]

    Cheng Y, Liu X J 2008 J. Appl. Phys. 104 104911

    [36]

    Torrent D, Snchez-Dehesa J 2011 Wave Motion 6 48

    [37]

    Cai L W, Snchez-Dehesa J 2012 J. Acoust. Soc. Am. 4 132

  • [1] 隋玉梅, 何兆剑, 毕仁贵, 孔鹏, 吴吉恩, 赵鹤平, 邓科. 基于亥姆霍兹共振的超薄弧形声学超表面地毯斗篷. 物理学报, 2024, 73(6): 064301. doi: 10.7498/aps.73.20231706
    [2] 胥强荣, 朱洋, 林康, 沈承, 卢天健. 一种具有动态磁负刚度薄膜声学超材料的低频隔声特性. 物理学报, 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [3] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为. 物理学报, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [4] 沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟. 暗声学超材料型充液管道的低频消声特性. 物理学报, 2019, 68(14): 144301. doi: 10.7498/aps.68.20190311
    [5] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展. 物理学报, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [6] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究. 物理学报, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [7] 贺子厚, 赵静波, 姚宏, 陈鑫. 薄膜底面Helmholtz腔声学超材料的隔声性能. 物理学报, 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [8] 刘少刚, 赵跃超, 赵丹. 基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性. 物理学报, 2019, 68(23): 234301. doi: 10.7498/aps.68.20191334
    [9] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [10] 张丰辉, 唐宇帆, 辛锋先, 卢天健. 微穿孔蜂窝-波纹复合声学超材料吸声行为. 物理学报, 2018, 67(23): 234302. doi: 10.7498/aps.67.20181368
    [11] 丁昌林, 董仪宝, 赵晓鹏. 声学超材料与超表面研究进展. 物理学报, 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [12] 郑圣洁, 夏百战, 刘亭亭, 于德介. 空间盘绕型声学超材料的亚波长拓扑谷自旋态. 物理学报, 2017, 66(22): 228101. doi: 10.7498/aps.66.228101
    [13] 张永燕, 吴九汇, 钟宏民. 新型负模量声学超结构的低频宽带机理研究. 物理学报, 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [14] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏. 负质量密度声学超材料的反常多普勒效应. 物理学报, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [15] 刘娇, 侯志林, 傅秀军. 局域共振型声学超材料机理探讨. 物理学报, 2015, 64(15): 154302. doi: 10.7498/aps.64.154302
    [16] 张向东, 陈虹, 王磊, 赵志高, 赵爱国. 圆柱形分层五模材料声学隐身衣的理论与数值分析. 物理学报, 2015, 64(13): 134303. doi: 10.7498/aps.64.134303
    [17] 孙宏伟, 林国昌, 杜星文, P.F. Pai. 一种新型声学超材料平板对机械波吸收性能的模拟与实验研究. 物理学报, 2012, 61(15): 154302. doi: 10.7498/aps.61.154302
    [18] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [19] 丁昌林, 赵晓鹏, 郝丽梅, 朱卫仁. 一种基于开口空心球的声学超材料. 物理学报, 2011, 60(4): 044301. doi: 10.7498/aps.60.044301
    [20] 丁昌林, 赵晓鹏. 可听声频段的声学超材料. 物理学报, 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
计量
  • 文章访问数:  6104
  • PDF下载量:  376
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-12
  • 修回日期:  2016-06-30
  • 刊出日期:  2016-09-05

/

返回文章
返回