-
Terahertz (THz) waves have been widely investigated recently due to their ability to reflect the fingerprint characteristics of samples. As a promising method, THz technology has aroused great interest in various applications, especially biological imaging, environmental monitoring, non-destructive evaluation, spectroscopy and molecular analysis. In order to reveal the intramolecular vibration/rotation information of various compounds, the linewidths of their absorption lines are usually in a range of GHz or even MHz, and THz waves with wide tunability, narrow linewidth, high frequency accuracy, and high power stability are required. Currently, the linewidth with GHz level and low SNR at higher frequency still limit its further applications in reveal intramolecular information. In this work, the thermal distribution characteristics of DAST crystals based on diamond substrates under continuous laser pumping conditions are theoretically studied by COMSOL Multiphysics, and the effectiveness of diamond substrates in dissipating heat from DAST crystals is experimentally verified. Then, a narrow-linewidth and tunable organic-crystal continuous-wave terahertz source is demonstrated. Two narrow-linewidth CW fiber lasers are used as the pump sources for generating difference frequency. The terahertz wave is continuously tunable in a range of 1.1–3 THz. The maximum output power of 3.39 nW is obtained at 2.493 THz. The power fluctuation in 30 min is measured to be 2.19%. In addition, the generated THz wave has a high polarization extinction ratio of 9.44 dB. Using this CW-THz source for high-precision spectral detection of air with different humidity, the results correspond well with the gas absorption spectral lines in the Hitran database, proving that the CW-THz source has narrow linewidth, high frequency accuracy and stability. Therefore, it can promote the practical application of tunable CW-THz source, thus having good potential in THz high-precision spectroscopic detection and multispectral imaging.
-
图 3 (a)热损伤实验示意图; (b) DAST晶体热损伤表面; (c) Diamond-DAST内表面; (d) Diamond -DAST晶体内部; (e) Diamond -DAST晶体外表面
Figure 3. (a) Schematic diagram of thermal damage experiment; (b) thermal damage surface of DAST crystal; (c) surface of Diamond-DAST crystal; (d) inside the diamond-DAST crystal; (e) outer surface of the Diamond-DAST crystal.
表 1 有/无金刚石衬底DAST晶体热损伤情况与泵浦功率关系表
Table 1. Dependence of pump power and thermal damage of DAST crystal with/without diamond substrate.
晶体无形变 热应力导致晶体内部发生可恢复
微小形变(降低功率可复原)热应力导致晶体内部发生不可
恢复形变(降低功率不可复原)晶体熔化 DAST P<0.45 W 0.45 W≤P<0.75 W 0.75 W≤P<1.20 W P≥1.20 W Diamond-DAST P<1.10 W 1.10 W≤P<1.70 W 1.70 W≤P<2.65 W P≥2.65 W -
[1] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[2] Sirtori C 2002 Nature 417 132
[3] Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2020 ACS Photonics 7 1082Google Scholar
[4] Stinson H T, Sternbach A, Najera O, Jing R, McLeod A S, Slusar T V, Mueller A, Anderegg L, Kim H T, Rozenberg M, Basov D N 2018 Nat. Commun. 9 3604Google Scholar
[5] 穆宁, 杨川艳, 马康, 全玉莲, 王诗, 赖颖, 李飞, 王与烨, 陈图南, 徐德刚, 冯华 2016 物理学报 71 178702
Mu N, Yang C Y, Ma K, Quan Y L, Wang S, Lai Y, Li F, Wang Y Y, Chen T N, Xu D G, Feng H 2022 Acta Phys. Sin. 71 178702
[6] 王玉文, 董志伟, 李瀚宇, 周逊, 罗振飞 2016 物理学报 65 134101Google Scholar
Wang Y W, Dong Z W, Li H Y, Zhou X, Luo Z F 2016 Acta Phys. Sin. 65 134101Google Scholar
[7] Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W, Luo Y 2016 Trends Biotechnol. 34 810Google Scholar
[8] Aghasi H, Naghavi S M H, Taba M T, Aseeri M A, Cathelin A, Afshari E 2020 Appl. Phys. Rev. 7 021302Google Scholar
[9] Cherkassky V S, Knyazev B A, Kubarev V V, Kulipanov G N, Kruyshev G L, Matveenko A N, Petrov A K, Petrov V M, Scheglov M A, Shevchenko O A, Vmokurov N A 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Teraheriz Electronics Karlsruhe, Germany, September 17-October 01, 2004 p567
[10] Chhantyal-Pun R, Valavanis A, Keeley J T, Rubino P, Kundu I, Han Y, Dean P, Li L, Davies A G, Linfield E H 2018 Opt. Lett. 43 2225Google Scholar
[11] Mueller E R, Henschke R, Robotham W E, Newman L A, Laughman L M, Hart R A, Kennedy J, Pickett H M 2007 Appl. Optics 46 4907Google Scholar
[12] Chen K, Tang L, Xu D, Wang Y, Yan C, Nie G, Hu C, Wu B, Zhu J, Yao J 2021 ACS Photonics 8 3141Google Scholar
[13] Mansourzadeh S, Vogel T, Shalaby M, Wulf F, Saraceno C J 2021 Opt. Express 29 38946Google Scholar
[14] Lee A J, Pask H M 2014 Opt. Lett. 39 442Google Scholar
[15] He Y, Wang Y, Xu D, Nie M, Yan C, Tang L, Shi J, Feng J, Yan D, Liu H, Teng B, Feng H, Yao J 2017 Appl. Phys. B 124 16
[16] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar
Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta. Phys. Sin. 65 070702Google Scholar
[17] Tang M, Minamide H, Wang Y, Notake T, Ohno S, Ito H 2011 Opt. Express 19 779Google Scholar
[18] Walsh D, Stothard D J M, Edwards T J, Browne P G, Rae C E, Dunn M H 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 1196Google Scholar
[19] Paul J R, Scheller M, Laurain A, Young A, Koch S W, Moloney J 2013 Opt. Lett. 38 3654Google Scholar
[20] 刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662
Liu H, Xu D G, Yao J Q Acta. Phys. Sin. 2008 57 5662
[21] Cunningham P D, Hayden L M 2010 Opt. Express 18 23620Google Scholar
[22] Zhao H, Tan Y, Wu T, Steinfeld G, Zhang Y, Zhang C, Zhang L, Shalaby M 2019 Appl. Phys. Lett. 114 241101Google Scholar
[23] Wang Z, Wang Y, Li H, Ge M, Xu D, Yao J 2023 Opt. Express 31 39030Google Scholar
[24] Rothman L S, Jacquemart D, Barbe A, Benner D C, Birk M, Brown L R, Carleer M R, Chackerian C, Chance K, Coudert L H, Dana V, Devi V M, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Vander Auwera J, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Radiat. Transfer 96 139Google Scholar
Metrics
- Abstract views: 209
- PDF Downloads: 4
- Cited By: 0