Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Incipient spallation of high purity copper under non-one-dimensional strain shock waves

Xie Pu-Chu Wang Xiao-Song Hu Chang-Ming Hu Jian-Bo Zhang Feng-Guo Wang Yong-Gang

Citation:

Incipient spallation of high purity copper under non-one-dimensional strain shock waves

Xie Pu-Chu, Wang Xiao-Song, Hu Chang-Ming, Hu Jian-Bo, Zhang Feng-Guo, Wang Yong-Gang
PDF
HTML
Get Citation
  • A new spallation experimental method by using conical target is proposed. Based on the analysis of wave propagation, the basic principle of spallation experiment of conical target is discussed. Then incipient spallation of high purity (HP) copper under non-one-dimensional strain shock wave is studied experimentally by using a gas gun setup. The damage distribution characteristics and micro-mechanism of conical HP copper target are analyzed. The intrinsic relationship between the characteristics of free surface velocity profiles and damage evolution is explored. The results indicate that 1) continuous damage zones including different damage states appear in the conical HP copper target with initial spallation from the bottom of cone to the top of cone along the direction parallel to the cone surface, which is attributed to the spatial evolution of the amplitude and duration time of tensile stress in the conical target; 2) quantitative statistical analysis of damage inside conical HP copper target reveals that the nucleation and early growth of micro-voids are random, while the coalescence of micro-voids has significant localization characteristics; 3) the normal free surface particle velocity profiles with typical pull-back spallation signals at different locations of conical HP copper target are measured by multi-channel photon Doppler velocimetry. Comparing with the damage distribution characteristics, it is revealed that the spallation strength based on pull-back velocity is independent of damage, and is the critical nucleation stress of micro-voids. But the slope and amplitude of pull-back rebound velocity depend on damage evolution process, which relates to the change of damage evolution rate and stress relaxation caused by damage degree respectively.
      Corresponding author: Wang Yong-Gang, wangyonggang@nbu.edu.cn
    • Funds: Project supported by National Defense Basic Scientific Science Challenge Project of China(Grant No. TZ2018001) and the National Natural Science Foundation of China (Grant No. 11202196)
    [1]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253Google Scholar

    [2]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture (New York: Springer-Verlag)

    [3]

    Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528Google Scholar

    [4]

    Koller D D, Hixson R S 2005 J. Appl. Phys. 98 103518Google Scholar

    [5]

    彭辉, 裴晓阳, 李平, 贺红亮, 柏劲松 2015 物理学报 64 216201Google Scholar

    Peng H, Pei X Y, Li P, He H L, Bai J S 2015 Acta Phys. Sin. 64 216201Google Scholar

    [6]

    Turley W D, Fensin S J, Hixson R S, Jones D R, La Lone B M, Stevens G D, Thomas A, Veeser L R 2018 J. Appl. Phys. 123 055102Google Scholar

    [7]

    席涛, 范伟, 储根柏, 税敏, 何卫华, 赵永强, 辛建婷, 谷渝秋 2017 物理学报 66 040202Google Scholar

    Xi T, Fan W, Chu G B, Shui M, He W H, Zhao Y Q, Xin J T, Gu Y Q 2017 Acta Phys. Sin. 66 040202Google Scholar

    [8]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 物理学报 64 054601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 054601Google Scholar

    [9]

    Li C, Li B, Huang J Y, Ma H H, Zhu J, Luo S N 2016 Mater. Sci. Eng. A 660 139Google Scholar

    [10]

    Escobedo J. P, Dennis-Koller D, CerretaE K, Patterson B M, Bronkhorst C A, Hansen B L, Tonks D, Lebensohn R A 2011 J. Appl. Phys. 110 033513Google Scholar

    [11]

    Fensin S J, Escobedo J P, Gray G T, Patterson B M, Trujillo C P, Cerreta E K 2014 J. Appl. Phys. 115 203516Google Scholar

    [12]

    Moore J A, Li SF, Rhee M, Barton N R 2018 J. Dyn. Behav. Mater. 4 464Google Scholar

    [13]

    张凤国, 周洪强, 张广财, 洪滔 2011 物理学报 60 074601Google Scholar

    Zhang F G, Zhou H Q, Zhang G C, Hong T 2011 Acta Phys. Sin. 60 074601Google Scholar

    [14]

    王永刚, 胡剑东, 祁美兰, 贺红亮 2011 物理学报 60 126201Google Scholar

    Wang Y G, Hu J D, Qi M L, He H L 2011 Acta Phys. Sin. 60 126201Google Scholar

    [15]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601Google Scholar

    [16]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131Google Scholar

    [17]

    李雪梅, 汪小松, 王鹏来, 卢敏, 贾路峰 2009 爆炸与冲击 29 162Google Scholar

    Li X M, Wang X S, Wang P L, Lu M, Jia L F 2009 Explosion and Shock Waves 29 162Google Scholar

    [18]

    Yang Y, Chen J X, Peng Z Q, Guo Z L, Tang T G, Hu H B, Hu Y N 2016 Mater. Sci. Eng. A 667 54

    [19]

    Johnson G R, Cook W H 1983 Proceedings of the Seventh International Symposium on Ballistics Den Haag, The Netherlands 1983 p541

    [20]

    裴晓阳 2013 博士学位论文 (绵阳: 中国工程物理研究院)

    Pei X Y 2013 Ph. Dissertation (MianYang: China Academy of Engineering Physics) (in Chinese)

    [21]

    Seaman L, Curran D R, Crewdson R C 1978 J. Appl. Phys. 49 5221Google Scholar

    [22]

    Novikov S A 1967 J. Appl. Meth. Tech. Phys. 3 109

    [23]

    Chen D N, Yu Y Y, Yin Z H, Wang H R, Liu G Q 2005 Int. J. Impact Eng. 31 811Google Scholar

    [24]

    Rybakov A P 2000 Int. J. Impact Eng. 24 1041Google Scholar

    [25]

    彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2014 物理学报 63 196202Google Scholar

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2014 Acta Phys. Sin. 63 196202Google Scholar

    [26]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 物理学报 64 034601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 034601Google Scholar

    [27]

    Kanel G, Razorenov S, Bogatch A, Utkin A, Grady D 1997 Int. J. Impact. Eng. 20 467Google Scholar

  • 图 1  平板飞片撞击锥形靶实验中x-y-t波系相互作用示意图

    Figure 1.  Schematic diagram of x-y-t wave interactions in the experiment of flat flyer impacting conical target.

    图 2  锥形靶层裂实验装置示意图

    Figure 2.  Schematic diagram of conical target experiment.

    图 3  高纯铜样品微观结构EBSD表征照片

    Figure 3.  Microstructure image of high-purity spallation copper by using EBSD.

    图 4  软回收的锥形靶样品图

    Figure 4.  Soft-recovered conical copper target.

    图 5  锥形靶内部微损伤分布特征光学显微照片

    Figure 5.  Optical micrograph of micro-damage distribution in the conical copper target.

    图 6  锥形靶内4个典型区域的微损伤分布光学显微照片 (a)区域a; (b)区域b; (c)区域c; (d)区域d

    Figure 6.  Optical micrographs of micro-damage distribution in four typical regions of the conical target: (a) Region a; (b) region b; (c) region c; (d) region d.

    图 7  平板撞击锥形靶轴对称二维有限元计算模型及4个典型区域中心单元应力时程曲线 (a)有限元计算模型; (b)应力时程曲线

    Figure 7.  Two-dimensional axial symmetric finite element method model of conical target impacted by planar impactor and stress profiles of central element in four typical regions: (a) Finite element method model; (b) stress profiles.

    图 8  锥形靶内4个典型位置处沿x方向的损伤度统计结果

    Figure 8.  Damage distribution along the x direction in four typical regions of the conical target.

    图 9  锥形靶内沿着y方向微损伤分布的光学显微照片 (a)区域e; (b)区域f

    Figure 9.  Optical micrographs of micro-damage distribution along y direction in the conical target: (a) Region e; (b) region f.

    图 10  锥形靶内沿y方向的损伤度定量统计分布

    Figure 10.  Damage distribution along the y direction in the conical copper target

    图 11  不同损伤阶段横截面损伤分布的EBSD表征 (a)微孔洞长大; (b)微孔洞聚集

    Figure 11.  EBSD orientation maps of cross section damage at different damage stages: (a) Microvoid growth; (b) microvoid coalescence.

    图 12  原始态和冲击态高纯铜晶粒尺寸分布对比 (a)原始态; (b)冲击态

    Figure 12.  Comparison of grain size distributions of the high-purity copper in cross section: (a) Original; (b) shock compressed.

    图 13  锥形靶3个测点处的自由面速度时程曲线

    Figure 13.  Free surface velocity profiles measured from different points of conical target.

    表 1  三个测点的自由面速度参数

    Table 1.  Free surface velocity parameters measured from different points of conical target

    编号Δu1/m·s–1${\sigma _{{\rm{spall}}}}$/GPaΔu2/m·s–1$\dot \varepsilon $/104s–1${\dot u_{{\rm{f}}2}}$/107m·s–2
    测点157.761.3421.841.344.34
    测点255.851.3114.801.336.67
    测点361.111.3213.051.317.08
    DownLoad: CSV
  • [1]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253Google Scholar

    [2]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture (New York: Springer-Verlag)

    [3]

    Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528Google Scholar

    [4]

    Koller D D, Hixson R S 2005 J. Appl. Phys. 98 103518Google Scholar

    [5]

    彭辉, 裴晓阳, 李平, 贺红亮, 柏劲松 2015 物理学报 64 216201Google Scholar

    Peng H, Pei X Y, Li P, He H L, Bai J S 2015 Acta Phys. Sin. 64 216201Google Scholar

    [6]

    Turley W D, Fensin S J, Hixson R S, Jones D R, La Lone B M, Stevens G D, Thomas A, Veeser L R 2018 J. Appl. Phys. 123 055102Google Scholar

    [7]

    席涛, 范伟, 储根柏, 税敏, 何卫华, 赵永强, 辛建婷, 谷渝秋 2017 物理学报 66 040202Google Scholar

    Xi T, Fan W, Chu G B, Shui M, He W H, Zhao Y Q, Xin J T, Gu Y Q 2017 Acta Phys. Sin. 66 040202Google Scholar

    [8]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 物理学报 64 054601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 054601Google Scholar

    [9]

    Li C, Li B, Huang J Y, Ma H H, Zhu J, Luo S N 2016 Mater. Sci. Eng. A 660 139Google Scholar

    [10]

    Escobedo J. P, Dennis-Koller D, CerretaE K, Patterson B M, Bronkhorst C A, Hansen B L, Tonks D, Lebensohn R A 2011 J. Appl. Phys. 110 033513Google Scholar

    [11]

    Fensin S J, Escobedo J P, Gray G T, Patterson B M, Trujillo C P, Cerreta E K 2014 J. Appl. Phys. 115 203516Google Scholar

    [12]

    Moore J A, Li SF, Rhee M, Barton N R 2018 J. Dyn. Behav. Mater. 4 464Google Scholar

    [13]

    张凤国, 周洪强, 张广财, 洪滔 2011 物理学报 60 074601Google Scholar

    Zhang F G, Zhou H Q, Zhang G C, Hong T 2011 Acta Phys. Sin. 60 074601Google Scholar

    [14]

    王永刚, 胡剑东, 祁美兰, 贺红亮 2011 物理学报 60 126201Google Scholar

    Wang Y G, Hu J D, Qi M L, He H L 2011 Acta Phys. Sin. 60 126201Google Scholar

    [15]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601Google Scholar

    [16]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131Google Scholar

    [17]

    李雪梅, 汪小松, 王鹏来, 卢敏, 贾路峰 2009 爆炸与冲击 29 162Google Scholar

    Li X M, Wang X S, Wang P L, Lu M, Jia L F 2009 Explosion and Shock Waves 29 162Google Scholar

    [18]

    Yang Y, Chen J X, Peng Z Q, Guo Z L, Tang T G, Hu H B, Hu Y N 2016 Mater. Sci. Eng. A 667 54

    [19]

    Johnson G R, Cook W H 1983 Proceedings of the Seventh International Symposium on Ballistics Den Haag, The Netherlands 1983 p541

    [20]

    裴晓阳 2013 博士学位论文 (绵阳: 中国工程物理研究院)

    Pei X Y 2013 Ph. Dissertation (MianYang: China Academy of Engineering Physics) (in Chinese)

    [21]

    Seaman L, Curran D R, Crewdson R C 1978 J. Appl. Phys. 49 5221Google Scholar

    [22]

    Novikov S A 1967 J. Appl. Meth. Tech. Phys. 3 109

    [23]

    Chen D N, Yu Y Y, Yin Z H, Wang H R, Liu G Q 2005 Int. J. Impact Eng. 31 811Google Scholar

    [24]

    Rybakov A P 2000 Int. J. Impact Eng. 24 1041Google Scholar

    [25]

    彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2014 物理学报 63 196202Google Scholar

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2014 Acta Phys. Sin. 63 196202Google Scholar

    [26]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 物理学报 64 034601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 034601Google Scholar

    [27]

    Kanel G, Razorenov S, Bogatch A, Utkin A, Grady D 1997 Int. J. Impact. Eng. 20 467Google Scholar

  • [1] ZHANG Fengguo, WANG Yanjin, WANG Pei, WANG Xinxin. Variation law of micro-void distribution characteristics in early stage of spallation damage. Acta Physica Sinica, 2025, 74(1): 014601. doi: 10.7498/aps.74.20241338
    [2] Wang Lu-Sheng, Luo Long, Liu Hao, Yang Xin, Ding Jun, Song Kun, Lu Shi-Qing, Huang Xia. Law and mechanism of impact velocity on spalling and fracture behavior of single crystal nickel. Acta Physica Sinica, 2024, 73(16): 164601. doi: 10.7498/aps.73.20240244
    [3] Cao Song, Yin Wen, Zhou Bin, Hu Zhi-Liang, Shen Fei, Yi Tian-Cheng, Wang Song-Lin, Liang Tian-Jiao. Calculation of radiation damage of key components of China Spallation Neutron Source II target station. Acta Physica Sinica, 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [4] Zhou Xian-Ming, Wei Jing, Cheng Rui, Zhao Yong-Tao, Zeng Li-Xia, Mei Ce-Xiang, Liang Chang-Hui, Li Yao-Zong, Zhang Xiao-An, Xiao Guo-Qing. I L-shell X-rays from near Bohr-velocity I20+ ions impacting on various targets. Acta Physica Sinica, 2021, 70(2): 023201. doi: 10.7498/aps.70.20201236
    [5] Lin Qian, Xie Pu-Chu, Hu Jian-Bo, Zhang Feng-Guo, Wang Pei, Wang Yong-Gang. Numerical simulation on dynamic damage evolution of high pure copper with different grain sizes. Acta Physica Sinica, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [6] Zhu Qi, Wang Sheng-Tao, Zhao Fu-Qi, Pan Hao. Effect of stacking fault tetrahedron on spallation of irradiated Cu via molecular dynamics study. Acta Physica Sinica, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [7] Zhang Feng-Guo, Liu Jun, He An-Min, Wang Pei, Wang Kun, Zhou Hong-Qiang, Zhao Fu-Qi. Method of determining parameters of void growth damage model and its application to simulation of spall test. Acta Physica Sinica, 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527
    [8] Pei Xiao-Yang, Peng Hui, He Hong-Liang, Li Ping. Discussion on the physical meaning of free surface velocity curve in ductile spallation. Acta Physica Sinica, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
    [9] Peng Hui, Pei Xiao-Yang, Li Ping, He Hong-Liang, Bai Jin-Song. Micro-damage characteristics of incipient spall in high-purity copper. Acta Physica Sinica, 2015, 64(21): 216201. doi: 10.7498/aps.64.216201
    [10] Zhou Nan, Chen Shuo. The study of fluid with free surface by many-body dissipative particle dynamics. Acta Physica Sinica, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [11] Peng Hui, Li Ping, Pei Xiao-Yang, He Hong-Liang, Cheng He-Ping, Qi Mei-Lan. Rate-dependent characteristics of copper under plate impact. Acta Physica Sinica, 2014, 63(19): 196202. doi: 10.7498/aps.63.196202
    [12] Liu Yun-Long, Wang Yu, Zhang A-Man. Interaction between bubble and free surface near vertical wall with inclination. Acta Physica Sinica, 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [13] Zhang Feng-Guo, Zhou Hong-Qiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall. Acta Physica Sinica, 2013, 62(16): 164601. doi: 10.7498/aps.62.164601
    [14] Peng Hui, Li Ping, Pei Xiao-Yang, He Hong-Liang, Cheng He-Ping, Qi Mei-Lan. Experimental study of the spatial discontinuity of dynamic damage evolution. Acta Physica Sinica, 2013, 62(22): 226201. doi: 10.7498/aps.62.226201
    [15] Sun Zhan-Feng, He Hong-Liang, Li Ping, Li Qing-Zhong. The spall strength and shock compressive damage of AD95 ceramics. Acta Physica Sinica, 2012, 61(9): 096201. doi: 10.7498/aps.61.096201
    [16] Zhang Feng-Guo, Zhou Hong-Qiang, Zhang Guang-Cai, Hong Tao. Inertial and elastic-plastic effect on spallationdamage of ductile metals. Acta Physica Sinica, 2011, 60(7): 074601. doi: 10.7498/aps.60.074601
    [17] Yu Quan-Zhi, Yin Wen, Liang Tian-Jiao. Calculation and analysis of DPA in the main components of CSNS target station. Acta Physica Sinica, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [18] Zhang A-Man, Yao Xiong-Liang. The law of the underwater explosion bubble motion near free surface. Acta Physica Sinica, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [19] Liu Zhan-Jun, Zheng Chun-Yang, Cao Li-Hua, Li Bin, Zhu Shao-Ping. Influence of under-dense plasma on laser conical target interaction. Acta Physica Sinica, 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [20] CHIU SIH-TJUEN. THE (dp) STRIPPING REACTIONS WITH THE TARGET CORE EXCITATION. Acta Physica Sinica, 1965, 21(1): 208-217. doi: 10.7498/aps.21.208
Metrics
  • Abstract views:  8303
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2019
  • Accepted Date:  22 October 2019
  • Published Online:  05 February 2020

/

返回文章
返回