Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impact Velocity-Dependent Patterns and Mechanisms of Spalling Behavior in Single Crystal Nickel

Wang Lu-Sheng Luo Long Liu Hao Yang Xin Ding Jun Song Kun Lu Shi-Qing Huang Xia

Citation:

Impact Velocity-Dependent Patterns and Mechanisms of Spalling Behavior in Single Crystal Nickel

Wang Lu-Sheng, Luo Long, Liu Hao, Yang Xin, Ding Jun, Song Kun, Lu Shi-Qing, Huang Xia
PDF
Get Citation
  • To reveal the impact velocity (Up) effect on the spalling and fracture behavior of single crystal nickel, a non-equilibrium molecular dynamics approach is performed to investigate the free surface velocity curve, radial distribution function, atomic crystal structures, dislocations, and void evolution process. The results show that the critical Up for spalling behavior in single crystal nickel is 1.5 km/s, the spallation mechanism is classical spallation damage (Up≤1.5 km/s) and micro-spallation damage (Up>1.5 km/s). The number and distribution area, and stress distribution area under micro-spallation damage much higher than those under classical spallation damage. Analyzed the influence of impact velocity on the classical spalling damage behavior (Up ≤ 1.5 km/s) and obtained the corresponding spalling strength, an accident of spalling strength occurs at the Up of 1.3 km/s. The spalling strength of single crystal nickel is influenced by the combined effects of stacking faults, phase transformation, and dislocation mechanisms. The nucleation and emission of dislocations increase lead to a decrease in the spalling strength. When Up <1.3 km/s, spalling damage is primarily influenced by stacking faults. When Up =1.3 km/s, spalling strength is mainly affected by the competition between stacking faults and phase transformation. When Up >1.3 km/s, spalling strength is predominantly influenced by the body-centered cubic (BCC) phase transformation mechanism (transformation path: FCC → BCT → BCC). This study reveals the impact velocitydependent patterns, mechanisms, and effects on spalling damage and fracture, providing a theoretical basis for the protective application of nickel-based materials under extreme impact conditions.
  • [1]

    Tang Y, Wang R X, Xiao B, Zhang Z R, Li S, Qiao J W, Bai S X, Zhang Y, Liaw P K 2023 Progress in Materials Science 135 101090

    [2]

    Arcade S, Paul J H, Juan P E, Wang H X, Oromiehie E, Prusty G B, Phillips A W, John N A S 2023 Composites Part A 173 107674

    [3]

    Wang P F, Xu S L 2022 Advances in Experimental Impact Mechanics (Elsevier) pp41—74

    [4]

    Yu W T, Huang P Z 2018 Acta Mechanica Sinica 50 828 (in Chinese) [余文韬, 黄 佩珍 2018 力学学报 50 828]

    [5]

    Mukherjee T, Elmer J W, Wei H L, Lienert T J, Zhang W, Kou S, DebRoy T 2023 Progress in Materials Science 138 101153

    [6]

    Ogorodnikov V A, Mikhaĭlov A L, Burtsev V V, Lobastov S A, Erunov S V, Romanov A V, Rudnev A V, Kulakov E V, Bazarov Y B, Glushikhin V V, Kalashnik I A, Tsyganov V A, Tkachenko B I 2009 Journal of Experimental and Theoretical Physics 109 530

    [7]

    Huang L Q, Wang J, Momeni A, Wang S F 2021 Trans. Nonferrous Met. Soc. China 31 2116

    [8]

    Curran D R, Seaman L, Shockey D A 1987 Physics Reports 147 253

    [9]

    Ren K R, Liu H Y, Ma R, Chen S, Zhang S Y, Wang R X, Chen R, Tang Y, Li S, Lu F Y 2023 Journal of Materials Science & Technology 161 201

    [10]

    Luo Q S, Kitchen M, Li J B, Li W B, Li Y Z 2023 Wear 523 204779

    [11]

    Zhang W L, Kennedy G B, Muly K, Li P J, Thadhani N N 2020 International Journal of Impact Engineering 146 103725

    [12]

    Cheng J C, Chai H W, Fan G L, Li Z Q, Xie H L, Tan Z Q, Bie B X, Huang J Y, Luo S N 2020 Carbon 170 589

    [13]

    Ren Y, Li Z, Zhang Z Y, Zhang Z Y, Chen R, Li Z Y, Tan C W, Chen P W 2022 Materials Science & Engineering A 860 144320

    [14]

    Molinari A, Wright T W 2005 Journal of the Mechanics and Physics of Solids 53 1476

    [15]

    Luo S N, An Q, Germann T C, Han L B 2009 J. Appl. Phys 106 013502

    [16]

    Liao Y, Xiang M Z, Li G M, Wang K, Zhang X Y, Chen J 2018 Mechanics of Materials 126 13

    [17]

    Wang Y T, Zeng X G, Yang X, Xu T L 2022 Computational Materials Science 201 110870

    [18]

    Liao Y, Xiang M Z, Zeng X G, Chen J 2014 Computational Materials Science 95 89

    [19]

    Schuler H, Mayrhofer C, Thoma K 2006 International Journal of Impact Engineering 32 1635

    [20]

    Li P, Wang L S, Yan S L, Meng M, Zhou Y F, Xue K M 2021 International Journal of Refractory Metals and Hard Materials 94 105376

    [21]

    Xiang M Z, Hu H B, Chen J, Long Y 2013 Modell. Simul. Mater. Sci. Eng. 21 055005

    [22]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [23]

    Liao Y, Xiang M Z, Zeng X G, Chen J 2015 Mechanics of Materials 84 12

    [24]

    Li W H, Yao X H 2016 Computational Materials Science 124 151

    [25]

    He L, Wang F, Zeng X G, Yang X, Qi Z P 2020 Mechanics of Materials 143 103343

    [26]

    Chen B, Li Y L, Şopu D, Eckert J, Wu W P 2023 International Journal of Plasticity 162 103539

    [27]

    Jiang D D, Shao J L, Wu B, Wang P, He A M 2022 Scripta Materialia 210 114474

    [28]

    Xie H C, Ma Z C, Zhang W, Zhao H W, Ren L Q 2024 Journal of Materials Science & Technology 175 72

    [29]

    Cheng Z D, Zhu J, Sun T Y 2011 Acta Phys. Sin. 60 037504 (in Chinese) [程志 达, 朱静, 孙铁昱 2011 物理学报 60 037504]

    [30]

    Xu S N, Zhang L, Zhang C B, Qi Y 2007 Acta Metallurgica Sinica 43 379 (in Chinese) [徐送宁, 张林, 张彩碚,祁阳 2007 金属学报 43 379]

    [31]

    Liu B B, Chen Y C, Guo L, Li X F, Wang K, Deng H Q, Tian Z, Hu W Y, Xiao S F, Yuan D W 2023 International Journal of Mechanical Sciences 250 108330

    [32]

    Du X, Yuan F P, Xiong Q L, Zhang B, Kan Q H, Zhang X 2022 Acta Mechanica Sinica 54 2152 (in Chinese) [杜欣, 袁福平, 熊启林, 张波, 阚前华, 张旭 2022 力学学报 54 2152]

    [33]

    Chen B, Wu W P, Chen M X 2022 Computational Materials Science 202 111015

    [34]

    Zhou X W, Johnson R A, Wadley H N G 2004 Physical Review B 69 144113

    [35]

    Kedharnath A, Kapoor R, Sarkar A 2021 Computers and Structures 254 106614

    [36]

    Potirniche G P, Horstemeyer M F, Wagner G J, Gullett P M 2006 International Journal of Plasticity 22 257

    [37]

    Wang W D, Yi C L, Fan K Q 2013 Trans. Nonferrous Met. Soc. China 23 3353

    [38]

    Zhou Y, Cai Y, Lu L 2022 Journal of Experimental Mechanics 37 183 (in Chinese) [周延, 蔡洋, 卢磊 2022 实验力学 37 183]

    [39]

    Jian W R, Xie Z C, Xu S Z, Yao X H, Beyerlein I J 2022 Scripta Materialia 209 114379

    [40]

    Wang Y T, Zeng X G, Chen H Y, Yang X, Wang F, QI Z P 2021 Explosion and Shock Waves 41 139 (in Chinese) [王云天, 曾祥国, 陈华燕,杨鑫,王放, 祁忠鹏 2021 爆炸与冲击 41 139]

    [41]

    Yang X, Zhao Han, Gao X J, Chen Z L, Wang F, Zeng X G 2023 Explosion and Shock Waves 43 29 (in Chinese) [杨鑫, 赵晗, 高学军,陈臻林,王放,曾祥 国 2023 爆炸与冲击 43 29]

    [42]

    Zhou T T, He A M, Wang P, Shao J L 2019 Computational Materials Science 162 255

    [43]

    Thürmer D, Zhao S T, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M, Gunkelmann N 2022 Journal of Alloys and Compounds 895 162567

    [44]

    Wang J N, Wu B, He A M, Wu F C, Wang P, Wu H A 2021 Chinese Journal of High Pressure Physics 35 4 (in Chinese) [王嘉楠,伍鲍,何安民,吴凤超, 王裴,吴恒安 2021 高压物理学报 35 4]

    [45]

    Mescheryakov Y I, Divakov A K, Zhigacheva N I 2000 Shock Waves 10 43

    [46]

    Tang J F, Xiao J C, Deng L, Li W, Zhang X M, Wang L, Xiao S F, Deng H Q, Hu W Y 2018 Physical Chemistry Chemical Physics 20 28039

    [47]

    Wang K, Zhu W J, Xiang M Z, Xu Y, Li G M, Chen J 2019 Modelling and Simulation in Materials Science and Engineering 27 015001

    [48]

    Tuler F R, Butcher B M 1984 International Journal of Fracture 26 322

    [49]

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 034601 (in Chinese) [裴 晓阳, 彭辉, 贺红亮,李平 物理学报 2015 64 034601]

    [50]

    Davison L, Stevens A L 1972 Journal of Applied Physics 43 988

    [51]

    Kanel G I, Rasorenov S V, Utkin A V 1996 High-Pressure Shock Compression of Solids II (New York: Springer-Verlag) pp1—24

    [52]

    Bai Y L, Ke F J, Xia M F 1991 Acta Mechanica Sinica 23 290 (in Chinese) [白以 龙, 柯孚久, 夏蒙棼 1991 力学学报 23 290]

    [53]

    Qiu T, Xiong Y N, Xiao S F, Li X F, Hu W Y, Deng H Q 2017 Computational Materials Science 137 273

    [54]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Modelling and Simulation in Materials Science and Engineering 20 085007

  • [1] Zhao Zhong-Hua, Qu Guang-Hao, Yao Jia-Chi, Min Dao-Min, Zhai Peng-Fei, Liu Jie, Li Sheng-Tao. Molecular dynamics simulation of phase transition by thermal spikes in monoclinic ZrO2. Acta Physica Sinica, doi: 10.7498/aps.70.20201861
    [2] Ma Tong, Xie Hong-Xian. Formation mechanism of face-centered cubic phase in impact process of single crystal iron along [101] direction. Acta Physica Sinica, doi: 10.7498/aps.69.20191877
    [3] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, doi: 10.7498/aps.69.20200323
    [4] Zhu Qi, Wang Sheng-Tao, Zhao Fu-Qi, Pan Hao. Effect of stacking fault tetrahedron on spallation of irradiated Cu via molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.69.20191425
    [5] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, doi: 10.7498/aps.66.146201
    [6] Lin Chang-Peng, Liu Xin-Jian, Rao Zhong-Hao. Molecular dynamics simulation of the thermophysical properties and phase change behaviors of aluminum nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.64.083601
    [7] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, doi: 10.7498/aps.64.016202
    [8] Pei Xiao-Yang, Peng Hui, He Hong-Liang, Li Ping. Discussion on the physical meaning of free surface velocity curve in ductile spallation. Acta Physica Sinica, doi: 10.7498/aps.64.034601
    [9] Peng Hui, Li Ping, Pei Xiao-Yang, He Hong-Liang, Cheng He-Ping, Qi Mei-Lan. Rate-dependent characteristics of copper under plate impact. Acta Physica Sinica, doi: 10.7498/aps.63.196202
    [10] Rao Zhong-Hao, Wang Shuang-Feng, Zhang Yan-Lai, Peng Fei-Fei, Cai Song-Heng. Molecular dynamics simulation of the thermophysical properties of phase change material. Acta Physica Sinica, doi: 10.7498/aps.62.056601
    [11] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, doi: 10.7498/aps.61.196201
    [12] Zhou Ting-Ting, Huang Feng-Lei. Thermal expansion behaviors and phase transitions of HMX polymorphs via ReaxFF molecular dynamics simulations. Acta Physica Sinica, doi: 10.7498/aps.61.246501
    [13] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.60.096105
    [14] Chen Yong-Tao, Tang Xiao-Jun, Li Qing-Zhong. Phase transition and influence of phase transitionon spall in α phase Fe-based alloy. Acta Physica Sinica, doi: 10.7498/aps.60.046401
    [15] Shao Jian-Li, Qin Cheng-Sen, Wang Pei. Atomistic simulation of mechanical properties of martensitic transformation under dynamic compression. Acta Physica Sinica, doi: 10.7498/aps.58.1936
    [16] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Study of nucleation of void-induced phase transformation under shock compression. Acta Physica Sinica, doi: 10.7498/aps.57.1254
    [17] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.56.5389
    [18] Deng Xiao-Liang, Zhu Wen-Jun, He Hong-Liang, Wu Deng-Xue, Jing Fu-Qian. Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, doi: 10.7498/aps.55.4767
    [19] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, doi: 10.7498/aps.55.5545
    [20] Luo Jin, Zhu Wen-Jun, Lin Li-Bin, He Hong-Liang, Jing Fu-Qian. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting. Acta Physica Sinica, doi: 10.7498/aps.54.2791
Metrics
  • Abstract views:  17
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  17 July 2024

/

返回文章
返回