-
The dynamic response of iron, especially the phase transformation from the ambient body-centered-cubic (bcc) up-phase to the hexagonal-closed packed (hcp) -phase, has been studied extensively in the last 60 years due to its importance in industry and its role as a main constituent of Earth. Recently, this topic has attracted a lot of attention in the aspects of the kinetic characteristics and mechanism of the shock-induced phase transition, including orientation-, temperature-, time- and strain rate-dependences. But only a few data have been published on the crystal orientation effect. The systematic experimental results to identify the predictions of the non-equilibrium molecular dynamics (NEMD) simulation are still lacking. For this reason, we study the shock responses of the [100], [110] and [111] orientated iron single crystals by using a three-independent-sample method in one shot. Unlike previously reported [001] single-crystal iron, a clear three-wave structure consisting of a PEL wave (elastic wave), a P1 wave (plastic wave) and a P2 wave (phase transition wave) is observed in the measured wave profiles for all single-crystal iron samples. The elastic-plastic transition process is in accordance with the numerical simulation of dislocation-based constitutive model for visco-plastic deformation. It is found that the values of Hugoniot elastic limit HEL ((111)/(HEL) (110)/(HEL) (100)/(HEL)) are greater than 6 GPa and dependent on the initial crystal orientation. Such a high yield strength is consistent with the nanosecond X-ray diffraction of [001] single-crystal iron where the uniaxial compression of the lattice has been observed at a shock pressure of about 5.4 GPa. Moreover, the onset pressures PPT for the phase transition are obtained to be 13.890.57 GPa, 14.530.53 GPa and 16.050.67 GPa along the [100], [110], and [111] directions, respectively. Based on these results, it is concluded that the crystal orientation effect of PPT is consistent with the reported NEMD calculations. However, the measured values are lower. In addition, the transition strain-ratio of singlecrystal iron is found to be higher than that of polycrystalline iron, reflecting the influence of the transformation kinetics (i.e., transformation kinetics coefficient) on the wave profile evolution. Our observations indicate that the strong coupling between plasticity and phase transition in single crystal iron might be a key point for understanding the origin of the phase transition and also for ending the controversy of metastable -phase. The fine multi-wave profiles also provide an important experimental reference for improving the phase field modeling of shock-induced phase transition.
-
Keywords:
- phase transformation /
- elastic-plastic deformation /
- orientation dependence /
- single-crystal iron
[1] Saxena S K, Shen G, Lazor P 1993 Science 260 1312
[2] Minshall S 1955 J. Appl. Phys. 26 463
[3] Bancraft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291
[4] Saxena S K, Dubrovinsky L S, Hggkvist P, Cerenius Y, Shen G, Mao H K 1995 Science 269 1703
[5] Belonoshko A B, Dorogokupets P I, Johansson B, Saxena S K, Koči L 2008 Phys. Rev. B 78 104107
[6] Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359
[7] Crowhurst J C, Reed B W, Armstrong M R, Radousky H B, Carter J A, Swift D C, Zaug J M, Minich R W, Teslich N E, Kumer M 2014 J. Appl. Phys. 115 113506
[8] Ma Y Z, Selvi E, Levitas V I, Hashemi J 2006 J. Phys. Condens. Matter 18 1075
[9] Johnson P C, Stein B A, Davis R S 1962 J. Appl. Phys. 33 557
[10] Zaretsky E B 2009 J. Appl. Phys. 106 023510
[11] Merkel S, Liermann H P, Miyagi L 2013 Acta. Materialia 61 5144
[12] Lu Z P, Zhu W J, Liu S J, Lu T C, Chen X R 2009 Acta Phys. Sin. 58 2083 (in Chinese) [卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣 2009 物理学报 58 2083]
[13] Shao J L, He A M, Qin C S, Wang P 2009 Acta Phys. Sin. 58 5610 (in Chinese) [邵建立, 何安民, 秦承森, 王裴 2009 物理学报 58 5610]
[14] Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681
[15] Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210
[16] Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701
[17] Wang K, Xiao S F, Deng H Q, Zhu W J, Hu W Y 2014 Int. J. Plast. 59 180
[18] Lu Z P, Zhu W J, Lu T C, Wang W Q 2014 Modelling Simul. Sci. Eng. 22 025007
[19] Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404]
[20] Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立, 秦承森, 王裴 2009 物理学报 58 1936]
[21] Jensen B J, Gray III G T, Hixson R S 2009 J. Appl. Phys. 105 103502
[22] Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507
[23] Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J 2005 Phys. Rev. Lett. 95 075501
[24] Kalantar D H, Belak J F, Collins G W, Colvin J D, Davis H M, Effert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stlken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502
[25] Cao X X, Li J B, Li J, Li X H, Xu L, Wang Y, Zhu W J, Meng C M, Zhou X M 2014 J. Appl. Phys. 116 093516
[26] Hawreliak J A, El-Dasher B, Lorenzana H 2011 Phys. Rev. B 83 144114
[27] Krasnikov V S, Mayer A E, Yalovets P A 2011 Int. J. Plast. 27 1294
[28] Mayer A E, Khishchenko K V, Levashov P R, Mayer P N 2013 J. Appl. Phys. 113 193508
[29] Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872
[30] Yu J D, Wang W Q, Wu Q 2012 Phys. Rev. Lett. 109 115701
-
[1] Saxena S K, Shen G, Lazor P 1993 Science 260 1312
[2] Minshall S 1955 J. Appl. Phys. 26 463
[3] Bancraft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291
[4] Saxena S K, Dubrovinsky L S, Hggkvist P, Cerenius Y, Shen G, Mao H K 1995 Science 269 1703
[5] Belonoshko A B, Dorogokupets P I, Johansson B, Saxena S K, Koči L 2008 Phys. Rev. B 78 104107
[6] Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359
[7] Crowhurst J C, Reed B W, Armstrong M R, Radousky H B, Carter J A, Swift D C, Zaug J M, Minich R W, Teslich N E, Kumer M 2014 J. Appl. Phys. 115 113506
[8] Ma Y Z, Selvi E, Levitas V I, Hashemi J 2006 J. Phys. Condens. Matter 18 1075
[9] Johnson P C, Stein B A, Davis R S 1962 J. Appl. Phys. 33 557
[10] Zaretsky E B 2009 J. Appl. Phys. 106 023510
[11] Merkel S, Liermann H P, Miyagi L 2013 Acta. Materialia 61 5144
[12] Lu Z P, Zhu W J, Liu S J, Lu T C, Chen X R 2009 Acta Phys. Sin. 58 2083 (in Chinese) [卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣 2009 物理学报 58 2083]
[13] Shao J L, He A M, Qin C S, Wang P 2009 Acta Phys. Sin. 58 5610 (in Chinese) [邵建立, 何安民, 秦承森, 王裴 2009 物理学报 58 5610]
[14] Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681
[15] Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210
[16] Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701
[17] Wang K, Xiao S F, Deng H Q, Zhu W J, Hu W Y 2014 Int. J. Plast. 59 180
[18] Lu Z P, Zhu W J, Lu T C, Wang W Q 2014 Modelling Simul. Sci. Eng. 22 025007
[19] Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404]
[20] Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立, 秦承森, 王裴 2009 物理学报 58 1936]
[21] Jensen B J, Gray III G T, Hixson R S 2009 J. Appl. Phys. 105 103502
[22] Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507
[23] Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J 2005 Phys. Rev. Lett. 95 075501
[24] Kalantar D H, Belak J F, Collins G W, Colvin J D, Davis H M, Effert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stlken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502
[25] Cao X X, Li J B, Li J, Li X H, Xu L, Wang Y, Zhu W J, Meng C M, Zhou X M 2014 J. Appl. Phys. 116 093516
[26] Hawreliak J A, El-Dasher B, Lorenzana H 2011 Phys. Rev. B 83 144114
[27] Krasnikov V S, Mayer A E, Yalovets P A 2011 Int. J. Plast. 27 1294
[28] Mayer A E, Khishchenko K V, Levashov P R, Mayer P N 2013 J. Appl. Phys. 113 193508
[29] Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872
[30] Yu J D, Wang W Q, Wu Q 2012 Phys. Rev. Lett. 109 115701
Catalog
Metrics
- Abstract views: 6958
- PDF Downloads: 213
- Cited By: 0