Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress in Research on Crystalline-Amorphous and Amorphous-Amorphous Phase Transformation Behaviors

Hai-Wang Yang Ge Wu

Citation:

Progress in Research on Crystalline-Amorphous and Amorphous-Amorphous Phase Transformation Behaviors

Hai-Wang Yang, Ge Wu
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Unlike conventional crystalline metals, amorphous alloys possess a distinctive atomic arrangement of short-range order and long-range disorder, so they lack dislocations, grain boundaries and other conventional crystalline defects and therefore exhibit very high strength and hardness. However, their plastic deformation is highly localized into nanoscale shear bands, which readily leads to catastrophic fracture and results in very poor room-temperature ductility. Forming crystalline-amorphous or amorphous- amorphous dual-phase structure is an effective strategy to overcome the brittleness and limited plasticity of amorphous alloys. On the one hand, such heterogeneous architectures promote the formation of multiple shear bands, thereby dissipating energy and redistributing stress; on the other hand, when the amorphous phase size is reduced below roughly 100 nm, the glassy phase can deform by homogeneous flow, and interactions between nanoscale amorphous regions and dislocation activity in the crystalline phase favor more uniform macroscopic plasticity. Mechanical loading, heat treatment and other processing routes can drive the transformation from crystalline single-phase or amorphous states to crystalline-amorphous or amorphous-amorphous dual-phase structures, enabling a simultaneous achievement of ultrahigh strength and substantial uniform plastic deformation. The resulting dual-phase alloys can retain the unique properties of amorphous alloys. Accordingly, this review summarizes recent advances in crystalline-amorphous and amorphous-amorphous phase- transformation behavior:
    (1) Mechanical loading (friction, TRIP effects) can induce phase transformations. During frictional wear, materials experience large shear strains and stress concentrations; together with chemical reaction, these conditions can produce crystalline-amorphous dual-phase structures at the surface. Under externally applied loads, phase transformations and microstructural reconfiguration occur; crystalline-amorphous and amorphous-amorphous TRIP effects become the primary mechanisms for energy dissipation, thereby delaying local stress concentration and improving ductility and fracture resistance.
    (2) Thermal annealing above the glass transition temperature commonly induces crystallization of amorphous alloys, leading to in-situ precipitation of nanocrystals within the amorphous matrix. By controlling annealing temperature and time, the size and volume fraction of the precipitates can be tuned, and more refined heat-treatment paths can even trigger amorphous-amorphous transformation.
    (3) Mixing enthalpy design and elemental partitioning play important roles in crystalline-amorphous and amorphous-amorphous phase behaviors. Elements with large negative mixing enthalpies tend to attract and enrich one another, whereas those with positive mixing enthalpies tend to repel; mechanical loading, thermal treatment and other external driving forces further promote atomic diffusion and elemental redistribution, which mediate the formation of crystalline-amorphous and amorphous- amorphous dual-phase structures.
    (4) These unique structures endow crystalline-amorphous and amorphous-amorphous dual-phase alloys with excellent strength-ductility combinations as well as advantageous magnetic, hydrogen-storage and catalytic properties. Future research should concentrate on three directions: (Ⅰ) establishing a thermodynamic design framework centered on mixing enthalpy to clarify how compositional changes affect phase stability; (Ⅱ) developing large-scale, and mass-producible routes for dual-phase materials; and (Ⅲ) designing application-oriented dual-phase alloy systems that are low-cost, simple to fabricate, and have long service lives, thereby accelerating their industrial deployment in energy, precision machinery, electronics and communications, aerospace, and biomedical fields.
  • [1]

    Wang Z, Wang B, Zhang M, Guo R P, Wang X J, Qiao J W, Wang Z H 2024 J. Mater. Eng. Perform. 33 274

    [2]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243

    [3]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [4]

    Freed R L, Vander Sande J B 1978 J. Non-Cryst. Solids 27 9

    [5]

    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Nat. Mater. 6 192

    [6]

    Pauly S, Gorantla S, Wang G, Kühn U, Eckert J 2010 Nat. Mater. 9 473

    [7]

    Wu G, Liu S D, Wang Q, Rao J, Xia W Z, Yan Y Q, Eckert J, Liu C, Ma E, Shan Z W 2023 Nat. Commun. 14 3670

    [8]

    Wang W H 2022 BCAS 37 352(in Chinese) [汪卫华 2022 中国科学院院刊 37 352]

    [9]

    Miyoshi K, Buckley D H 1984 Thin Solid Films 118 363

    [10]

    Yoshizawa Y, Oguma S, Yamauchi K 1988 J. Appl. Phys. 64 6044

    [11]

    Brenner A, Couch D E, Williams E K 1950 J. Res. Nat. Bur. Stand 44 109

    [12]

    Turnbull D, Cohen M H 1958 J. Chem. Phys. 29 1049

    [13]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [14]

    Zhang C Y, Zhu Z W, Li S T, Wang Y Y, Li Z K, Li H, Yuan G, Zhang H F 2024 J. Mater. Sci. Technol. 181 115

    [15]

    Qin F X, Xie G Q, Dan Z H, Zhu S L, Seki I 2013 Intermetallics 42 9

    [16]

    Zhang W, Guo H, Li Y H, Wang Y M, Wang H, Chen M W, Yamaura S 2014 J. Alloys Compd. 617 310

    [17]

    Zeng Y Q, Nishiyama N, Inoue A 2009 Mater. Trans. 50 1243

    [18]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. 30 965

    [19]

    Li Q 2006 Mater. Lett. 60 3113

    [20]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nat. Mater. 2 661

    [21]

    Li M X, Zhao S F, Lu Z, Hirata A, Wen P, Bai H Y, Chen M W, Schroers J, Liu Y H, Wang W H 2019 Nature 569 99

    [22]

    Schroers J, Johnson W L 2004 Phys. Rev. Lett. 93 255506

    [23]

    Zheng Q, Ma H, Ma E, Xu J 2006 Scr. Mater. 55 541

    [24]

    Gu X J, McDermott A G, Poon S J, Shiflet G J 2006 Appl. Phys. Lett. 88 211905

    [25]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385

    [26]

    Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L 2008 Nature 451 1085

    [27]

    Rastogi P K, Duwez P 1970 J. Non-Cryst. Solids 5 1

    [28]

    Duhaj P, Barancok D, Ondrejka A 1976 J. Non-Cryst. Solids 21 411

    [29]

    Wu Y, Xiao Y H, Chen G L, Liu C T, Lu Z P 2010 Adv. Mater. 22 2770

    [30]

    Wu Y, Wang H, Wu H H, Zhang Z Y, Hui X D, Chen G L, Ma D, Wang X L, Lu Z P 2011 Acta Mater. 59 2928

    [31]

    Wu Y, Ma D, Li Q K, Stoica A D, Song W L, Wang H, Liu X J, Stoica G M, Wang G Y, An K, Wang X L, Li M, Lu Z P 2017 Acta Mater. 124 478

    [32]

    Boucharat N, Hebert R, Rösner H, Valiev R, Wilde G 2005 Scr. Mater. 53 823

    [33]

    Hebert R J, Perepezko J H 2004 Mater. Sci. Eng. A 375 728

    [34]

    He Y, Shiflet G J, Poon S J 1995 Acta Metall. Mater. 43 83

    [35]

    Qin W, Nagase T, Umakoshi Y 2009 Acta Mater. 57 1300

    [36]

    Nagase T, Umakoshi Y 2003 Scr. Mater. 48 1237

    [37]

    Shao L, Gorman B P, Aitkaliyeva A, David Theodore N, Xie G Q 2012 Appl. Phys. Lett. 101 041901

    [38]

    Sypien A, Kusinski J, Kusinski G J, Chris Nelson E 2003 Mater. Chem. Phys. 81 390

    [39]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501

    [40]

    Wu G, Chan K C, Zhu L L, Sun L G, Lu J 2017 Nature 545 80

    [41]

    Wu G, Liu C, Sun L G, Wang Q, Sun B A, Han B, Kai J J, Luan J H, Liu C T, Cao K, Lu Y, Cheng L Z, Lu J 2019 Nat. Commun. 10 5099

    [42]

    Wang J G, Choi B W, Nieh T G, Liu C T 2000 J. Mater. Res. 15 913

    [43]

    Herzer G 1990 IEEE Trans. Magn. 26 1397

    [44]

    Zhang Y H, Xu C, Yang T, Hou Z H, Zhang G F, Zhao D L 2012 Adv. Mat. Res. 557 1169

    [45]

    Mihailov L, Spassov T, Bojinov M 2012 Int. J. Hydrog. Energy 37 10499

    [46]

    Zeng Q S, Li Y C, Feng C M, Liermann P, Somayazulu M, Shen G Y, Mao H K, Yang R, Liu J, Hu T D, Jiang J Z 2007 PNAS 104 13565

    [47]

    Du Q, Liu X J, Zeng Q S, Fan H Y, Wang H, Wu Y, Chen S W, Lu Z P 2019 Phys. Rev. B 99 014208

    [48]

    Du Q, Liu X J, Fan H Y, Zeng Q S, Wu Y, Wang H, Chatterjee D, Ren Y, Ke Y B, Voyles P M, Lu Z P, Ma E 2020 Mater. Today 34 66

    [49]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679

    [50]

    Cao Y H, Yang M, Du Q, Chiang F K, Zhang Y J, Chen S W, Ke Y B, Lou H B, Zhang F, Wu Y, Wang H, Suihe J, Zhang X B, Zeng Q S, Liu X J, Lu Z P 2024 Nat. Commun. 15 6702

    [51]

    Tsuchiya K, Waitz T, Hara T, Karnthaler H P, Todaka Y, Umemoto M 2008 EMC 2008 14th European Microscopy Congress ( Aachen: Springer) p385

    [52]

    Zhao S T, Li Z Z, Zhu C Y, Yang W, Zhang Z R, Armstrong D E J, Grant P S, Ritchie R O, Meyers M A 2021 Sci. Adv. 7 eabb3108

    [53]

    Song M, Darsell J, Jana S 2022 J. Mater. Sci. 57 12055

    [54]

    Ren Y, Huang Z B, Wang Y C, Zhou Q, Yang T, Li Q K, Jia Q, Wang H F 2023 Compos. Part B Eng. 263 110833

    [55]

    Luo J S, Sun W T, Liang D S, Chan K C, Yang X S, Ren F Z 2023 Acta Mater. 243 118503

    [56]

    Yin C H, Liang Y L, Liang Y, Li W, Yang M 2019 Acta Mater. 166 208

    [57]

    Liu C, Li Z M, Lu W J, Bao Y, Xia W Z, Wu X X, Zhao H, Gault B, Liu C L, Herbig M, Fischer A, Dehm G, Wu G, Raabe D 2021 Nat. Commun. 12 5518

    [58]

    Han H N, Lee C G, Oh C S, Lee T H, Kim S J 2004 Acta Mater. 52 5203

    [59]

    Zhu R, Li S, Karaman I, Arroyave R, Niendorf T, Maier H J 2012 Acta Mater. 60 3022

    [60]

    Kwok T W J, Dye D 2023 Int. Mater. Rev. 68 1098

    [61]

    Zackay V F, Parker E R, Fahr D, Busch R 1967 ASM Trans. Quart. 60 252

    [62]

    Richman R H, Bolling G F 1971 Metall. Trans. 2 2451

    [63]

    Parker E R, Zackay V F 1973 Eng. Fract. Mech. 5 147

    [64]

    Jiménez Melero E, Van Dijk N H, Zhao L, Sietsma J, Offerman S E, Wright J P, Van Der Zwaag S 2009 Acta Mater. 57 533

    [65]

    Sugimoto K I, Kobayashi J, Nakajima Y, Kochi T 2014 Mater. Sci. Forum 783 1015

    [66]

    Wu Y, Zhou D Q, Song W L, Wang H, Zhang Z Y, Ma D, Wang X L, Lu Z P 2012 Phys. Rev. Lett. 109 245506

    [67]

    Fu X L, Wang G, Wu Y, Song W L, Shek C H, Zhang Y, Shen J, Ritchie R O 2020 Int. J. Plast. 128 102687

    [68]

    Wu G, Liu C, Yan Y Q, Liu S D, Ma X Y, Yue S Y, Shan Z W 2024 Nat. Commun. 15 1223

    [69]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534

    [70]

    Inoue A 2000 Acta Mater. 48 279

    [71]

    Yang L, Miller M K, Wang X L, Liu C T, Stoica A D, Ma D, Almer J, Shi D L 2009 Adv. Mater. 21 305

    [72]

    Shen J, Lu Z, Wang J Q, Lan S, Zhang F, Hirata A, Chen M W, Wang X L, Wen P, Sun Y H, Bai H Y, Wang W H 2020 J. Phys. Chem. Lett. 11 6718

    [73]

    Dong W X, Wu Z D, Ge J C, Liu S N, Lan S, Gilbert E P, Ren Y, Ma D, Wang X L 2021 Appl. Phys. Lett. 118 191901

    [74]

    Greer A L, Cheng Y Q, Ma E 2013 Mater. Sci. Eng. R Rep. 74 71

    [75]

    Zhang T, Inoue A 2004 Mater. Sci. Eng. A 375 432

    [76]

    Wang J, Kaban I, Levytskyi V, Li R, Han J, Stoica M, Gumeniuk R, Nielsch K 2021 J. Alloys Compd. 860 158398

    [77]

    Gu X J, Poon S J, Shiflet G J 2007 J. Mater. Res. 22 344

    [78]

    Nollmann N, Binkowski I, Schmidt V, Rösner H, Wilde G 2016 Scr. Mater. 111 119

    [79]

    Zhou J, Wu Y, Jiang S H, Song W L, Huang H L, Mao H H, Wang H, Liu X J, Wang X Z, Lu Z P 2020 Mater. Res. Lett. 8 23

    [80]

    Zhang Q S, Zhang H F, Zhu Z W, Hu Z Q 2005 Mater. Trans. 46 730

    [81]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027

    [82]

    Fan C, Inoue A 2000 Appl. Phys. Lett. 77 46

    [83]

    Lee C M, Chae S W, Kim H J, Lee J C 2007 Met. Mater. Int. 13 191

    [84]

    Kim H S, Hong S I 1999 Acta Mater. 47 2059

    [85]

    Wang A D, Zhao C L, He A N, Men H, Chang C T, Wang X M 2016 J. Alloys Compd. 656 729

    [86]

    Herzer G 1997 Handb. Magn. Mater. 10 415

    [87]

    Wu Y, Dong Y Q, Yang M N, Jia X J, Liu Z H, Lu H, Zhang H J, He A N, Li J W 2022 Metals 12 845

    [88]

    Jain I P, Lal C, Jain A 2010 Int. J. Hydrogen Energy 35 5133

    [89]

    Crivello J C, Dam B, Denys R V, Dornheim M, Grant D M, Huot J, Jensen T R, De Jongh P, Latroche M, Milanese C, Milčius D, Walker G. S, Webb C J, Zlotea C, Yartys V A 2016 Appl. Phys. A 122 97

    [90]

    Huang L J, Wang Y X, Wu D C, Tang J G, Wang Y, Liu J X, Huang Z, Jiao J Q, Liu J Q 2014 J. Power Sources 249 35

    [91]

    Au M 2005 Mater. Sci. Eng. B 117 37

    [92]

    Zhang Y H, Wang P P, Bu W G, Yuan Z M, Qi Y, Guo S H 2018 RSC Adv. 8 23353

    [93]

    Zhang Q A, Jiang C J, Liu D D 2012 Int. J. Hydrogen Energy 37 10709

    [94]

    Song L M, Li W, Wang G L, Zhang M H, Tao K Y 2007 Catal. Today 125 137

    [95]

    Deng Y, Yang Y Y, Ge L Y, Yang W Z, Xie K N 2017 Appl. Surf. Sci. 425 261

    [96]

    Wang P P, Wang J Q, Huo J T, Xu W, Wang X M, Wang G 2017 Sci. China Phys. Mech. Astron. 60 076112

    [97]

    Zhao Y M, Chen Q J, Ji L, Wang K, Huang G S 2024 React. Kinet. Mech. Cat. 137 1209

    [98]

    Zhang J, Qiao M, Li Y F, Shao Q, Huang X Q 2019 ACS Appl. Mater. Interfaces 11 39722

    [99]

    Ghobrial S, Kirk D W, Thorpe S J 2019 Electrocatalysis 10 243

  • [1] Zhang Xue-Yang, Hu Wang-Yu, Dai Xiong-Ying. Influence of iron anisotropy on phase transition near grain boundary under shock. Acta Physica Sinica, doi: 10.7498/aps.73.20231081
    [2] Tian Chun-Ling, Liu Hai-Yan, Wang Biao, Liu Fu-Sheng, Gan Yun-Dan. Phase transition and equation of state of dense liquid nitrogen at high temperature and high pressure. Acta Physica Sinica, doi: 10.7498/aps.71.20220124
    [3] Ma Tong, Xie Hong-Xian. Formation mechanism of face-centered cubic phase in impact process of single crystal iron along [101] direction. Acta Physica Sinica, doi: 10.7498/aps.69.20191877
    [4] Wang Chun-Jie, Wang Yue, Gao Chun-Xiao. Grain and grain boundary characteristics and phase transition of ZnS nanocrystallines under pressure. Acta Physica Sinica, doi: 10.7498/aps.69.20200240
    [5] Ren Jing-Li, Yu Li-Ping, Zhang Li-Ying. Critical phenomena in amorphous materials. Acta Physica Sinica, doi: 10.7498/aps.66.176401
    [6] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, doi: 10.7498/aps.66.146201
    [7] Yun Jiang-Juan, Chen Zheng, Li Shang-Jie. Multistage microstructural evolution caused by deformation in two-mode phase field crystals. Acta Physica Sinica, doi: 10.7498/aps.63.098106
    [8] Yun Jiang-Juan, Chen Zheng, Li Shang-Jie, Zhang Jing. Effect of predeformation on the transition from hexagonal phase to square phase near the melting point using phase field crystal method. Acta Physica Sinica, doi: 10.7498/aps.63.166401
    [9] Qu Yan-Dong, Kong Xiang-Qing, Li Xiao-Jie, Yan Hong-Hao. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.63.037301
    [10] Zhou Ting-Ting, Huang Feng-Lei. Thermal expansion behaviors and phase transitions of HMX polymorphs via ReaxFF molecular dynamics simulations. Acta Physica Sinica, doi: 10.7498/aps.61.246501
    [11] Ji Zheng-Hua, Zeng Xiang-Hua, Cen Jie-Ping, Tan Ming-Qiu. Electronic structure and phase transformation in ZnSe: An ab initio study. Acta Physica Sinica, doi: 10.7498/aps.59.1219
    [12] Liang Xiao-Lin, Gong Yue-Qiu, Liu Zhi-Zhuang, Lü Ye-Gang, Zheng Xue-Jun. Effect of external electric field on phase transitions of ferroelectric thin films. Acta Physica Sinica, doi: 10.7498/aps.59.8167
    [13] Chen Jun, He Jie, Lin Li-Bin, Song Ting-Ting. The theoretical study of metal-insulator transition of VO2. Acta Physica Sinica, doi: 10.7498/aps.59.6480
    [14] Shao Jian-Li, Qin Cheng-Sen, Wang Pei. Atomistic simulation of mechanical properties of martensitic transformation under dynamic compression. Acta Physica Sinica, doi: 10.7498/aps.58.1936
    [15] Chen Bin, Peng Xiang-He, Fan Jing-Hong, Sun Shi-Tao, Luo Ji. A thermo-elastoplastic constitutive equation including phase transformation and its applications. Acta Physica Sinica, doi: 10.7498/aps.58.29
    [16] Lu Zhi-Peng, Zhu Wen-Jun, Liu Shao-Jun, Lu Tie-Cheng, Chen Xiang-Rong. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study. Acta Physica Sinica, doi: 10.7498/aps.58.2083
    [17] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.56.5389
    [18] Wang Hui, Liu Jin-Fang, He Yan, Chen Wei, Wang Ying, Gerward L., Jiang Jian-Zhong. Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge. Acta Physica Sinica, doi: 10.7498/aps.56.6521
    [19] Hu Jian-Gang, Wang Zhen-Xia, Yong Zhen-Zhong, Li Qin-Tao, Zhu Zhi-Yuan. Phase transition from amorphous carbon to diamond nanocrystalline induced by 40Ar+. Acta Physica Sinica, doi: 10.7498/aps.55.6538
    [20] Liu Hong, Wang Hui. Phase transition in biaxial nematic liquid crystal. Acta Physica Sinica, doi: 10.7498/aps.54.1306
Metrics
  • Abstract views:  21
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  22 October 2025
  • /

    返回文章
    返回