-
In this paper, a split-step finite pointset method (SS-FPM) is proposed and applied to the simulation of the nonlinear Schrödinger/Gross-Pitaevskii equation (NLSE/GPE) with solitary wave solution. The motivation and main idea of SS-FPMisas follows. 1) The nonlinear Schrödinger equation is first divided into the linear derivative term and the nonlinear term based on the time-splitting method. 2) The finite pointset method (FPM) based on Taylor expansion and weighted least square method is adopted, and the linear derivative term is numerically discretized with the help of Wendland weight function. Then the two-dimensional (2D) nonlinear Schrödinger equation with Dirichlet and periodic boundary conditions is simulated, and the numerical solution is compared with the analytical one. The numerical results show that the presented SS-FPM has second-order accuracy even if in the case of non-uniform particle distribution, and is easily implemented compared with the FDM, and its computational error is smaller than those in the existed corrected SPH methods. Finally, the 2D NLS equation with periodic boundary and the two-component GP equation with Dirichlet boundary and outer rotation BEC, neither of which has an analytical solution, are numerically predicted by the proposed SS-FPM. Compared with other numerical results, our numerical results show that the SS-FPM can accurately display the nonlinear solitary wave singularity phenomenon and quantized vortex process.
-
Keywords:
- nonlinear solitary wave /
- finite pointset method /
- splitting scheme /
- Gross-Pitaevskii equation
[1] Bao W Z, Chern I L, Lim F Y 2006 J. Comput. Phys. 219 836Google Scholar
[2] Qu C, Sun K, Zhang C 2015 Phys. Rev. A 91 053630Google Scholar
[3] Mason P, Aftalion A 2011 Phys. Rev. A 84 033611Google Scholar
[4] Antoine X, Bao W, Besse C 2013 Comput. Phys. Commun. 184 2621Google Scholar
[5] Wang D S, Xue Y S, Zhang Z F 2016 Rom. J. Phys. 61 827
[6] Wang D S, Shi Y R, Feng W X, Wen L 2017 Physica D 351−352 30Google Scholar
[7] Wang H 2005 Appl. Math. Comput. 170 17
[8] Gao Y L, Mei L Q 2016 Appl. Num. Math. 109 41Google Scholar
[9] Blanes S, Casas F, Murua A 2015 J. Comput. Phys. 303 396Google Scholar
[10] Dehghan M, Taleei A 2010 Comput. Phys. Commun. 181 43Google Scholar
[11] Wang T C, Guo B L, Xu Q B 2013 J. Comput. Phys. 243 382Google Scholar
[12] Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar
[13] Chen R Y, Tong L M, Nie L R, Wang C I, Pan W 2017 Physica A: Statist. Mech. Appl. 468 532Google Scholar
[14] Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115Google Scholar
[15] Gong Y Z, Wang Q, Wang Y S, Cai J X 2017 J. Comput. Phys. 328 354Google Scholar
[16] Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203Google Scholar
[17] Dehghan M, Mirzaei D 2008 Int. J. Numer. Meth. 76 501Google Scholar
[18] Abbasbandy S, Roohani Ghehsareh H, Hashim I 2013 Eng. Anal. Bound. Elem. 37 885Google Scholar
[19] Liu M B, Liu G R 2010 Arch. Comput. Meth. Eng. 17 25Google Scholar
[20] 刘谋斌, 常建忠 2010 物理学报 59 3654Google Scholar
Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654Google Scholar
[21] Huang C, Lei J M, Liu M B, Peng X Y 2015 In. J. Num. Meth. Flu. 78 691Google Scholar
[22] 蒋涛, 陈振超, 任金莲, 李刚 2017 物理学报 66 130201Google Scholar
Jiang T, Chen Z C, Ren J L, Li G 2017 Acta Phys. Sin. 66 130201Google Scholar
[23] Jiang T, Chen Z C, Lu W G, Yuan J Y, Wang D S 2018 Comput. Phys. Commun. 231 19Google Scholar
[24] Kuhnert J, Tiwari S 2001 Berichte des Fraunhofer ITWMNr.25
[25] Kuhnert J, Tiwari S 2001 Berichte des Fraunhofer ITWMNr.30
[26] Resendiz-Flores E O, Garcia-Calvillo I D 2014 Int. J. Heat Mass Trans. 71 720Google Scholar
[27] Wendland H 1995 Adv. Comput. Math. 4 389Google Scholar
-
图 6 两个不同时刻
${\rm{Re}}\left( \psi \right){\rm{,Im}}\left( \psi \right),\left| \psi \right|$ 的三维数值结果 (a1), (a2), (a3) t = 0; (b1), (b2), (b3) t = 0.25Figure 6. Three-dimensional numerical results of
${\rm{Re}}\left( \psi \right){\rm{,Im}}\left( \psi \right),\left| \psi \right|$ at two different times: (a1), (a2), (a3) t = 0; (b1), (b2), (b3) t = 0.25表 1 粒子分布均匀/非均匀两种情况下的最大误差er
Table 1. Maximum error er under uniform/non-uniform particles distribution
t 均匀分布/10–4 非均匀分布/10–4 0.5 2.48 3.22 1.0 4.94 6.12 1.5 7.40 9.26 2.0 9.88 16.50 表 2 四种不同方法在t = 2时的数值收敛阶
Table 2. The rate of convergence obtained using four different methods at t = 2
粒子间距 误差 收敛阶 SS-ICPSPH ${\lambda _0} = {\text{π}}/32$ 8.99×10–2 ${\lambda _0} = {\text{π}}/64$ 2.23×10–3 2.007 ${\lambda _0} = {\text{π}}/128$ 5.52×10–4 2.017 SS-FDM ${\lambda _0} = {\text{π}}/16$ 2.016×10–2 ${\lambda _0} = {\text{π}}/32$ 5.045×10–3 1.9986 ${\lambda _0} = {\text{π}}/64$ 1.262×10–3 1.9997 FPM ${\lambda _0} = {\text{π}}/32$ 4.6×10–3 ${\lambda _0} = {\text{π}}/64$ 1.35×10–3 1.768 ${\lambda _0} = {\text{π}}/128$ 3.86×10–4 1.806 SS-FPM ${\lambda _0} = {\text{π}}/32$ 3.95×10–3 ${\lambda _0} = {\text{π}}/64$ 9.88×10–4 2.000 ${\lambda _0} = {\text{π}}/128$ 2.46×10–4 2.006 表 3 三种不同方法在t = 2时的数值收敛阶
Table 3. The rate of convergence obtained using three different particle methods at t = 2
粒子间距 误差/× 10–4 收敛阶 SS-ICPSPH ${\lambda _0} = {\text{π}}/32$ 75.530 ${\lambda _0} = {\text{π}}/64$ 18.280 2.046 ${\lambda _0} = {\text{π}}/128$ 4.316 2.082 SS-FDM ${\lambda _0} = {\text{π}}/32$ 24.670 ${\lambda _0} = {\text{π}}/64$ 6.634 1.895 ${\lambda _0} = {\text{π}}/128$ 1.725 1.943 SS-FPM ${\lambda _0} = {\text{π}}/32$ 67.840 ${\lambda _0} = {\text{π}}/64$ 16.790 2.015 ${\lambda _0} = {\text{π}}/128$ 4.128 2.024 -
[1] Bao W Z, Chern I L, Lim F Y 2006 J. Comput. Phys. 219 836Google Scholar
[2] Qu C, Sun K, Zhang C 2015 Phys. Rev. A 91 053630Google Scholar
[3] Mason P, Aftalion A 2011 Phys. Rev. A 84 033611Google Scholar
[4] Antoine X, Bao W, Besse C 2013 Comput. Phys. Commun. 184 2621Google Scholar
[5] Wang D S, Xue Y S, Zhang Z F 2016 Rom. J. Phys. 61 827
[6] Wang D S, Shi Y R, Feng W X, Wen L 2017 Physica D 351−352 30Google Scholar
[7] Wang H 2005 Appl. Math. Comput. 170 17
[8] Gao Y L, Mei L Q 2016 Appl. Num. Math. 109 41Google Scholar
[9] Blanes S, Casas F, Murua A 2015 J. Comput. Phys. 303 396Google Scholar
[10] Dehghan M, Taleei A 2010 Comput. Phys. Commun. 181 43Google Scholar
[11] Wang T C, Guo B L, Xu Q B 2013 J. Comput. Phys. 243 382Google Scholar
[12] Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar
[13] Chen R Y, Tong L M, Nie L R, Wang C I, Pan W 2017 Physica A: Statist. Mech. Appl. 468 532Google Scholar
[14] Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115Google Scholar
[15] Gong Y Z, Wang Q, Wang Y S, Cai J X 2017 J. Comput. Phys. 328 354Google Scholar
[16] Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203Google Scholar
[17] Dehghan M, Mirzaei D 2008 Int. J. Numer. Meth. 76 501Google Scholar
[18] Abbasbandy S, Roohani Ghehsareh H, Hashim I 2013 Eng. Anal. Bound. Elem. 37 885Google Scholar
[19] Liu M B, Liu G R 2010 Arch. Comput. Meth. Eng. 17 25Google Scholar
[20] 刘谋斌, 常建忠 2010 物理学报 59 3654Google Scholar
Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654Google Scholar
[21] Huang C, Lei J M, Liu M B, Peng X Y 2015 In. J. Num. Meth. Flu. 78 691Google Scholar
[22] 蒋涛, 陈振超, 任金莲, 李刚 2017 物理学报 66 130201Google Scholar
Jiang T, Chen Z C, Ren J L, Li G 2017 Acta Phys. Sin. 66 130201Google Scholar
[23] Jiang T, Chen Z C, Lu W G, Yuan J Y, Wang D S 2018 Comput. Phys. Commun. 231 19Google Scholar
[24] Kuhnert J, Tiwari S 2001 Berichte des Fraunhofer ITWMNr.25
[25] Kuhnert J, Tiwari S 2001 Berichte des Fraunhofer ITWMNr.30
[26] Resendiz-Flores E O, Garcia-Calvillo I D 2014 Int. J. Heat Mass Trans. 71 720Google Scholar
[27] Wendland H 1995 Adv. Comput. Math. 4 389Google Scholar
Catalog
Metrics
- Abstract views: 7545
- PDF Downloads: 71
- Cited By: 0