Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Solution of the discrete Boltzmann equation: Based on the finite volume method

Sun Jia-Kun Lin Chuan-Dong Su Xian-Li Tan Zhi-Cheng Chen Ya-Lou Ming Ping-Jian

Citation:

Solution of the discrete Boltzmann equation: Based on the finite volume method

Sun Jia-Kun, Lin Chuan-Dong, Su Xian-Li, Tan Zhi-Cheng, Chen Ya-Lou, Ming Ping-Jian
PDF
HTML
Get Citation
  • Mesoscopic methods serve as a pivotal link between the macroscopic and microscopic scales, offering a potent solution to the challenge of balancing physical accuracy with computational efficiency. Over the past decade, significant progress has been made in the application of the discrete Boltzmann method (DBM), which is a mesoscopic method based on a fundamental equation of nonequilibrium statistical physics (i.e., the Boltzmann equation), in the field of nonequilibrium fluid systems. The DBM has gradually become an important tool for describing and predicting the behavior of complex fluid systems. The governing equations comprise a set of straightforward and unified discrete Boltzmann equations, and the choice of their discrete format significantly influences the computational accuracy and stability of numerical simulations. In a bid to bolster the reliability of these simulations, this paper utilizes the finite volume method as a solution for handling the discrete Boltzmann equations. The finite volume method stands out as a widely employed numerical computation technique, known for its robust conservation properties and high level of accuracy. It excels notably in tackling numerical computations associated with high-speed compressible fluids. For the finite volume method, the value of each control volume corresponds to a specific physical quantity, which makes the physical connotation clear and the derivation process intuitive. Moreover, through the adoption of suitable numerical formats, the finite volume method can effectively minimize numerical oscillations and exhibit strong numerical stability, thus ensuring the reliability of computational results. Particularly, the MUSCL format where a flux limiter is introduced to improve the numerical robustness is adopted for the reconstruction in this paper. Ultimately, the DBM utilizing the finite volume method is rigorously validated to assess its proficiency in addressing flow issues characterized by pronounced discontinuities. The numerical experiments encompass scenarios involving shock waves, Lax shock tubes, and acoustic waves. The results demonstrate the method's precise depiction of shock wave evolution, rarefaction waves, acoustic phenomena, and material interfaces. Furthermore, it ensures the conservation of mass, momentum, and energy within the system, as well as accurately measures the hydrodynamic and thermodynamic nonequilibrium effects of the fluid system. Compared with the finite difference method, the finite volume method is also more convenient and flexible in dealing with boundary conditions of different geometries, and can be adapted to a variety of systems with complex boundary conditions. Consequently, the finite volume method further broadens the scope of DBM in practical applications.
      Corresponding author: Lin Chuan-Dong, linchd3@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51806116), the Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos. 2022A1515012116, 2024A1515010927), and the China Scholarship Council (Grant No. 202306380288).
    [1]

    阎超 2006 计算流体力学方法及应用 (北京: 北京航空航天大学出版社) 第1—14页

    Yan C 2006 Computational Fluid Dynamics Methods and Applications (Beijing: Beihang University Press) pp1–14

    [2]

    Xu A G, Zhang G C, Gan Y B, Chen F, Yu X J 2012 Front. Phys. 7 582Google Scholar

    [3]

    Leach A R 2001 Molecular Modelling: Principles and Applications (London: Pearson education) pp7-53

    [4]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第1—12页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp1–12

    [5]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第1—7页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applicatuons (Beijing: Science Press) pp1–7

    [6]

    张涵信, 沈孟育 2003 计算流体力学: 差分方法的原理和应用 (北京: 国防工业出版社) 第1—230页

    Zhang H X, Shen M Y 2003 Compatutional Fluid Dynamics: Fundamentals and Applications of Finite Difference Methods (Beijing: National Defense Industry Press) pp1–230

    [7]

    Darwish M, Moukalled F 2016 The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFOAM and Matlab (Berlin: Springer) pp103–207

    [8]

    章本照, 印建安, 张宏基 2003 流体力学数值方法 (北京: 机械工业出版社) 第1—53页

    Zhang B Z, Yin J A, Zhang H J 2003 Numerical Methods in Fluid Dynamics (Beijing: China Machine Press) pp1–53

    [9]

    许爱国, 张玉东 2022 复杂介质动理学 (北京: 科学出版社) 第1—112页

    Xu A G, Zhang Y D 2022 Complex Media Kinetics (Beijing: Science Press) pp1–112

    [10]

    Lin C D, Xu A G, Zhang G C, Li Y, Succi S 2014 Phys. Rev. E 89 013307Google Scholar

    [11]

    Zhang Y D, Xu A G, Zhang G C, Chen Z H, Wang P 2019 Comput. Phys. Commun. 238 50Google Scholar

    [12]

    Ji Y, Lin C D, Luo K H 2021 AIP Adv. 11 045217Google Scholar

    [13]

    林传栋 2022 空气动力学学报 40 98Google Scholar

    Lin C D 2022 Acta Aerodyn. Sin. 40 98Google Scholar

    [14]

    Lin C D, Sun X P, Su X L, Lai H L, Fang X 2023 Chin. Phys. B 32 110503Google Scholar

    [15]

    Sun G L, Gan Y B, Xu A G, Shi Q F 2023 arXiv: 2311.06546 [physics.flu-dyn]

    [16]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511Google Scholar

    [17]

    Lin C D, Luo K H 2019 Phys. Rev. E 99 012142Google Scholar

    [18]

    Van Leer B 1979 J. Comput. Phys. 32 101Google Scholar

    [19]

    Gottlieb S, Shu C W 1998 Math. Comput. 67 73Google Scholar

    [20]

    Lin C D, Luo K H, Xu A G, Gan Y B, Lai H L 2021 Phys. Rev. E 103 013305Google Scholar

  • 图 1  离散速度(a)与控制单元的示意图(b)

    Figure 1.  Sketches of discrete velocities (a) and control volumes (b).

    图 2  网格无关性验证 (a)不同网格数下冲击波波阵面附近的压强分布; (b)不同空间步长下的相对误差

    Figure 2.  Grid-independence validation: (a) Pressure distribution in the vicinity of the shock wave for different grid numbers; (b) relative errors at different spatial steps.

    图 3  冲击波周围的物理量, t = 0.375  (a) 密度; (b) 水平速度; (c) 温度; (d) 压强

    Figure 3.  Physical quantities around the shock wave, t = 0.375: (a) Density; (b) horizontal velocity; (c) temperature; (d) pressure.

    图 4  冲击波周围的非平衡量, t =0.375

    Figure 4.  Nonequilibrium quantities around the shock wave, t =0.375.

    图 5  Lax激波管中的物理量, t = 0.15 (a) 密度; (b) 水平速度; (c) 温度; (d) 压强

    Figure 5.  Physical quantities in the Lax shock tube, t = 0.15: (a) Density; (b) horizontal velocity; (c) temperature; (d) pressure.

    图 6  在声波传播过程中不同时刻的压强分布图, $\gamma = 1.4,\;T=1.0 $, t = 0, 0.050, 0.125, 0.150, 0.175和0.200

    Figure 6.  Pressure contours in the evolution of a sound wave at time instants t = 0, 0.050, 0.125, 0.150, 0.175, and 0.200, respectively, $\gamma = 1.4,\;T=1.0 $.

    图 7  质量、动量和能量的守恒性验证: 正方形、菱形、三角形和圆形分别表示平均密度、x方向平均动量、y方向平均动量和平均能量. 实线代表对应的精确解

    Figure 7.  Verification of the conservation of mass, momentum and energy. Squares, diamonds, triangles and circles represent the average values of density, momentum in the x direction, momentum in the y direction and energy, respectively. The solid lines denotes the corresponding exact solutions.

    图 8  声波的传播 (a)$\gamma = 1.4 $, 不同温度; (b)$ T = 1.0 $, 不同比热比

    Figure 8.  Propagation of the sound wave: (a) $ \gamma = 1.4 $ with various specific heat ratios; (b) $ T = 1.0 $ with various temperatures.

  • [1]

    阎超 2006 计算流体力学方法及应用 (北京: 北京航空航天大学出版社) 第1—14页

    Yan C 2006 Computational Fluid Dynamics Methods and Applications (Beijing: Beihang University Press) pp1–14

    [2]

    Xu A G, Zhang G C, Gan Y B, Chen F, Yu X J 2012 Front. Phys. 7 582Google Scholar

    [3]

    Leach A R 2001 Molecular Modelling: Principles and Applications (London: Pearson education) pp7-53

    [4]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第1—12页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp1–12

    [5]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第1—7页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applicatuons (Beijing: Science Press) pp1–7

    [6]

    张涵信, 沈孟育 2003 计算流体力学: 差分方法的原理和应用 (北京: 国防工业出版社) 第1—230页

    Zhang H X, Shen M Y 2003 Compatutional Fluid Dynamics: Fundamentals and Applications of Finite Difference Methods (Beijing: National Defense Industry Press) pp1–230

    [7]

    Darwish M, Moukalled F 2016 The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFOAM and Matlab (Berlin: Springer) pp103–207

    [8]

    章本照, 印建安, 张宏基 2003 流体力学数值方法 (北京: 机械工业出版社) 第1—53页

    Zhang B Z, Yin J A, Zhang H J 2003 Numerical Methods in Fluid Dynamics (Beijing: China Machine Press) pp1–53

    [9]

    许爱国, 张玉东 2022 复杂介质动理学 (北京: 科学出版社) 第1—112页

    Xu A G, Zhang Y D 2022 Complex Media Kinetics (Beijing: Science Press) pp1–112

    [10]

    Lin C D, Xu A G, Zhang G C, Li Y, Succi S 2014 Phys. Rev. E 89 013307Google Scholar

    [11]

    Zhang Y D, Xu A G, Zhang G C, Chen Z H, Wang P 2019 Comput. Phys. Commun. 238 50Google Scholar

    [12]

    Ji Y, Lin C D, Luo K H 2021 AIP Adv. 11 045217Google Scholar

    [13]

    林传栋 2022 空气动力学学报 40 98Google Scholar

    Lin C D 2022 Acta Aerodyn. Sin. 40 98Google Scholar

    [14]

    Lin C D, Sun X P, Su X L, Lai H L, Fang X 2023 Chin. Phys. B 32 110503Google Scholar

    [15]

    Sun G L, Gan Y B, Xu A G, Shi Q F 2023 arXiv: 2311.06546 [physics.flu-dyn]

    [16]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511Google Scholar

    [17]

    Lin C D, Luo K H 2019 Phys. Rev. E 99 012142Google Scholar

    [18]

    Van Leer B 1979 J. Comput. Phys. 32 101Google Scholar

    [19]

    Gottlieb S, Shu C W 1998 Math. Comput. 67 73Google Scholar

    [20]

    Lin C D, Luo K H, Xu A G, Gan Y B, Lai H L 2021 Phys. Rev. E 103 013305Google Scholar

  • [1] Gao Xiao-Wei, Ding Jin-Xing, Liu Hua-Yu. Finite line method and its application in coupled heat transfer between fluid-solid domains. Acta Physica Sinica, 2022, 71(19): 190201. doi: 10.7498/aps.71.20220833
    [2] Liu Bo, Xing Pu, Ding Song, Xie Ming-Jun, Feng Lin, Shi Xiao-Tian. A new preconditioning algorithm for computable compressible flow. Acta Physica Sinica, 2022, 71(12): 124701. doi: 10.7498/aps.71.20220102
    [3] Chen Bo, Wang Hong-Nian, Yang Shou-Wen, Yin Chang-Chun. An efficient algorithm of three-dimensional explicit electromagnetic sensitivity matrix in marine controlled source electromagnetic measurements. Acta Physica Sinica, 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [4] Hu Jia-Yi, Zhang Wen-Huan, Chai Zhen-Hua, Shi Bao-Chang, Wang Yi-Hang. Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows. Acta Physica Sinica, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [5] Li Dong-Dong, Wang Ge, Zhang Bin. Flow and mixing in shock-accelerated elliptic helium gas cylinder process. Acta Physica Sinica, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [6] Li De-Mei, Lai Hui-Lin, Xu Ai-Guo, Zhang Guang-Cai, Lin Chuan-Dong, Gan Yan-Biao. Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows. Acta Physica Sinica, 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
    [7] Li Qiang, Li Wu-Ming. Numerical simulation on weld line development of injection molding in mold cavity with inserts. Acta Physica Sinica, 2016, 65(6): 064601. doi: 10.7498/aps.65.064601
    [8] Chen Da-Wei, Wang Pei, Yu Xi-Jun, Sun Hai-Quan, Ma Dong-Jun. On modeling and physical laws of isentropic speed of sound in dense gas-particle two-phase compressible flows. Acta Physica Sinica, 2016, 65(9): 094702. doi: 10.7498/aps.65.094702
    [9] Wang Hao-Sen, Yang Shou-Wen, Bai Yan, Chen Tao, Wang Hong-Nian. Three-dimensional finite volume simulation of the response of azimuth electromagnetic wave resistivity while drilling in inhomogeneous anisotropic formation. Acta Physica Sinica, 2016, 65(7): 079101. doi: 10.7498/aps.65.079101
    [10] Zhang Qi, Zhang Ran, Song Hai-Ming. A finite volume method for pricing the American lookback option. Acta Physica Sinica, 2015, 64(7): 070202. doi: 10.7498/aps.64.070202
    [11] Xu Ai-Guo, Zhang Guang-Cai, Ying Yang-Jun. Progess of discrete Boltzmann modeling and simulation of combustion system. Acta Physica Sinica, 2015, 64(18): 184701. doi: 10.7498/aps.64.184701
    [12] Gan Cai-Jun, Li Lang, Ma Han-Dong, Xiong Hong-Liang. Theoretical and experimental investigations on aero-optical effect at the second stage of the compressible mixing layer. Acta Physica Sinica, 2014, 63(5): 054703. doi: 10.7498/aps.63.054703
    [13] Zhou Jian-Mei, Zhang Ye, Wang Hong-Nian, Yang Shou-Wen, Yin Chang-Chun. Efficient simulation of three-dimensional marine controlled-source electromagnetic response in anisotropic formation by means of coupled potential finite volume method. Acta Physica Sinica, 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [14] Yao Xiong-Liang, Ye Xi, Zhang A-Man. Cavitation bubble in compressible fluid subjected to traveling wave. Acta Physica Sinica, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [15] Gan Cai-Jun, Li Lang, Ma Han-Dong, Xiong Hong-Liang. Theoretical and experimental investigation on aero-optical effect for a compressible mixing layer. Acta Physica Sinica, 2013, 62(18): 184701. doi: 10.7498/aps.62.184701
    [16] Yang Bin-Xin, Ouyang Jie. Simulation of residual stress in viscoelastic mold filling process. Acta Physica Sinica, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [17] Yang Bin-Xin, Ouyang Jie, Li Xue-Juan. Dynamic simulation of fiber orientation in mold filling process in a complex cavity. Acta Physica Sinica, 2012, 61(4): 044701. doi: 10.7498/aps.61.044701
    [18] Ning Fang-Li, Dong Liang, Zhang Wen-Zhi, Wang Kang. A finite volume algorithm for solving nonlinear standing waves in acoustic resonators. Acta Physica Sinica, 2012, 61(19): 190203. doi: 10.7498/aps.61.190203
    [19] Zheng Shu-Dong, Li Bo-Wen, Li Ji-Guang, Dong Chen-Zhong, Yuan Wen-Yuan. The influences of the finite nuclear size effects on the energy levels and wavefunctions of hydrogen-like ions. Acta Physica Sinica, 2009, 58(3): 1556-1562. doi: 10.7498/aps.58.1556
    [20] YU HUI-DAN, ZHAO KAI-HUA. LATTICE BOLTZMANN MODEL FOR COMPRESSIBLE FLOW SIMULATION. Acta Physica Sinica, 1999, 48(8): 1470-1476. doi: 10.7498/aps.48.1470
Metrics
  • Abstract views:  2342
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  19 December 2023
  • Accepted Date:  29 March 2024
  • Available Online:  11 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回