Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Finite line method and its application in coupled heat transfer between fluid-solid domains

Gao Xiao-Wei Ding Jin-Xing Liu Hua-Yu

Citation:

Finite line method and its application in coupled heat transfer between fluid-solid domains

Gao Xiao-Wei, Ding Jin-Xing, Liu Hua-Yu
PDF
HTML
Get Citation
  • In this paper, a completely new numerical method, called finite line method, is proposed and is used to solve fluid-solid coupled heat transfer problems. The extensively used finite element method is a method based on volume discretization; the finite volume method is a method operated on the surface of the control volume; the boundary element method is the one based on boundary surface discretization; the meshless method is the one constructing the computational algorithm using surrounding scatter points at a collocation point. The method proposed in the work is based on the use of finite number of lines, in which an arbitrarily high-order computational scheme can be established by using only two or three straight or curved lines at each point. The creative idea of the method is that by using a directional derivative technique along a line, high-order two- and three-dimensional spatial partial derivatives with respective to the global coordinates can be derived from the Lagrange polynomial interpolation formulation, based on which the discretized system of equations can be directly formed by the problem-governing partial differential equation and relevant boundary conditions. The proposed finite line method is very simple in theory and robust in universality, by using which the boundary value problems of partial differential equations in solid and fluid mechanics problems can be solved in a unified way. In solving fluid mechanics problems, the diffusion term is simulated by using the central line set to maintain a high efficiency, and the convection term is computed by using an upwind line set to embody its directional characteristic. A few of numerical examples will be given in this paper for fluid-solid coupled heat transfer problems for verifying the correctness and efficiency of the proposed method.
      Corresponding author: Gao Xiao-Wei, xwgao@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12072064).
    [1]

    Zienkiewicz O C, Taylor R L, Fox D 2014 The Finite Element Method for Solid and Structural Mechanics (7th Ed.) (Butterworth-Heinemann: Elsevier)

    [2]

    Zienkiewicz O C, Taylor R L, Nithiarasu P 2014 The Finite Element Method for Fluid Dynamics (7th Ed.)(Butterworth-Heinemann: Elsevier)

    [3]

    Wen P H, Cao P, Korakianitis T 2014 Eng. Anal. Bound. Elem. 46 116Google Scholar

    [4]

    Li M, Wen P H 2014 Int. J. Numer. Methods Eng. 99 372Google Scholar

    [5]

    Gao X W, Huang S Z, Cui M, Ruan B, Zhu Q H, Yang K, Lv J, Peng H F 2017 Int. J. Heat Mass Transf. 115 882Google Scholar

    [6]

    Zheng Y T, Gao X W, Lv J, Peng H F 2020 Int. J. Numer. Methods Eng. 121 3722Google Scholar

    [7]

    陶文铨 2001 数值传热学 (西安: 西安交通大学出版社)

    Tao W Q 2001 Numerical Heat Transfer (Xi’an: Xi’an JiaoTong University Press) (in Chinese)

    [8]

    Moukalled F, Mangani L, Darwish M 2015 The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFOAM and MATLAB (Cham: Springer)

    [9]

    姚振汉, 王海涛 2010 边界元法 (北京: 高等教育出版社)

    Yao Z H, Wang H T 2010 Boundary Element Methods (Beijing: Higher Education Press) (in Chinese)

    [10]

    胡金秀, 高效伟 2016 物理学报 65 014701Google Scholar

    Hu J X, Gao X W 2016 Acta Phys. Sin. 65 014701Google Scholar

    [11]

    张见明 2010 计算机辅助工程 19 5Google Scholar

    Zhang J M 2010 Comput. Aided Eng. 19 5Google Scholar

    [12]

    袁驷 1992 数值计算与计算机应用 13 252Google Scholar

    Yuan S 1992 J. Num. Methods Comput. Applicat. 13 252Google Scholar

    [13]

    Gao X W, Liang Y, Xu B B, Yang K, Peng H F 2019 Eng. Anal. Bound. Elem. 108 422Google Scholar

    [14]

    张雄, 宋康祖, 陆明万 2003 计算力学学报 20 725Google Scholar

    Zhang X, Song Z K, Lu M W 2003 Chin. J. Comput. Mech. 20 725Google Scholar

    [15]

    王东东, 张汉杰, 梁庆文 2016 计算力学学报 33 605Google Scholar

    Wang D D, Zhang H J, Liang Q W 2016 Chinese Journal of Computational Mechanics 33 605Google Scholar

    [16]

    程玉民 2015 无网格方法 (北京: 科学出版社)

    Cheng Y M 2015 Meshless Methods (Beijing: Sciense Press) (in Chinese)

    [17]

    Karageorghis A, Lesnic D, Marin L 2021 J. Eng. Math. 126 10Google Scholar

    [18]

    傅卓佳, 习强, 黄河 2019 力学与工程——数值计算和数据分析 2019 学术会议论文集 第77页

    Fu Z J, Xi Q, Huang H 2019 Mechanics and Engineering — Numerical Computation and Data Analysis Beijing, China, April 19–21, 2019 p77 (in Chinese)

    [19]

    Lv J, Sheng G Y, Gao X W, Zhang H W 2015 Int. J. Comput. Methods 12 1550026Google Scholar

    [20]

    Dolejší V, Feistauer M 2015 Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow (Cham: Springer)

    [21]

    高效伟, 彭海峰, 杨恺, 王静 2015 高等边界单元法 (北京: 科学出版社)

    Gao X W, Peng H F, Yang K, Wang J 2015 Advanced Boundary Element Method (Beijing: Sciense Press) (in Chinese)

    [22]

    王勖成 2003 有限单元法 (北京: 清华大学出版社)

    Wang X C 2003 Finite Element Method (Beijing: Tsinghua University Press) (in Chinese)

    [23]

    高效伟, 徐兵兵, 吕军, 彭海峰 2019 力学学报 51 703Google Scholar

    Gao X W, Xu B B, Lv J, Peng H F 2019 Chin. J. Theor. Appl. Mech. 51 703Google Scholar

    [24]

    Liu H Y, Gao X W, Xu B B 2019 Comput. Fluids 192 104276Google Scholar

    [25]

    Xu B B, Gao X W, Jiang W W, Cui M, Lv J 2019 Eng. Fract. Mech. 218 106575Google Scholar

    [26]

    Gao X W, Ding J X, Cui M, Yang K 2019 Eng. Anal. Bound. Elem. 109 117Google Scholar

    [27]

    Gao X W 2021 The 2021 International Conference on Applied Mathematics, Modeling and Computer Simulation (AMMCS 2021) Wuhan, China, November 13–14, 2021

    [28]

    Gao X W, Liu H Y, Ruan B 2021 Comput. Struct. 243 106411Google Scholar

  • 图 1  将计算域划分成一系列配置点

    Figure 1.  Discretizing computational domain into a series of collocation points.

    图 2  两条线组成的二维(d = 2)线系

    Figure 2.  Line set of 2D (d = 2) consisting of two lines.

    图 3  三条线组成的三维(d = 3)线系

    Figure 3.  Line set of 3D (d = 3) consisting of three lines.

    图 4  一阶与二阶导数相关的节点

    Figure 4.  Related nodes of the 1st and 2nd order partial derivatives.

    图 5  同一配置点的迎风与中心线系

    Figure 5.  Upwind and central line sets at a same collocation point.

    图 6  单根管道结构尺寸与边界条件

    Figure 6.  Dimensions and B.C. of a single channel structure.

    图 7  不同网格尺寸下管道外表面温度分布

    Figure 7.  Temperature distribution on the channel outer surface under different mesh sizes.

    图 8  不同网格尺寸下流固界面温度分布

    Figure 8.  Temperature distribution on the fluid-solid interface under different mesh sizes.

    图 9  管道结构左端与中间局部网格放大图

    Figure 9.  Enhanced meshes of the left and middle parts of the channel structure.

    图 10  不同流速下管道外表面温度分布

    Figure 10.  Temperature distribution on channel outer surface under different velocities.

    图 11  不同流速下流固界面温度分布

    Figure 11.  Temperature distribution on fluid-solid interface under different velocities.

    图 12  三根管道结构尺寸与边界条件

    Figure 12.  Dimensions and B.C. of a three-channel structure.

    图 13  三管道结构FLM分析线系连成的网格图

    Figure 13.  Mesh connected by line sets of all points for FLM analysis of the three channel structure.

    图 14  不同流速下的温度云图 (a) v = 0.002 m/s; (b) v = 0.005 m/s; (c) v = 0.01 m/s; (d) v = 0.5 m/s

    Figure 14.  Contours under different velocities: (a) v = 0.002 m/s; (b) v = 0.005 m/s; (c) v = 0.01 m/s; (d) v = 0.5 m/s.

    图 15  不同流速下结构上部外表面温度变化曲线

    Figure 15.  Temperature variation curve on the outer surface of upper structure under different velocities.

    图 16  不同流速下斜管流体域下表面温度变化曲线

    Figure 16.  Temperature variation curve on the lower surface of fluid domain of the oblique channel under different velocities.

    图 17  计算得到的管道冷却系统温度云图

    Figure 17.  Contours of computed temperature over the channel cooling system.

    图 18  计算得到的冷却系统上下表面和各区域界面的温度变化曲线

    Figure 18.  Variation curve of the computed temperature on the upper and lower surfaces as well as on the interfaces of the cooling system.

    图 19  含三根管道的三维冷却结构尺寸与边界条件

    Figure 19.  Dimensions and B.C. of a 3D cooling structure with three channels.

    图 20  所有配置点的线系连成的网格

    Figure 20.  Mesh connected by line sets of all collocation points

    图 21  横截面上的配置点线系连成的网格与局部放大图

    Figure 21.  Mesh connected by line sets on the transverse section and a locally refined part around a corner.

    图 22  总体结构上的温度云图

    Figure 22.  Contour plot of computed temperature over the entire structure.

    图 23  管道走向垂直中面上的温度云图

    Figure 23.  Contour plot of computed temperature over the vertical middle plan.

    图 24  沿图22中所示的线段$ {L_1} $上的温度分布

    Figure 24.  Computed temperature along line $ {L_1} $ marked in Fig.22.

    图 25  沿图22中所示的线段$ {L_2} $上的温度分布

    Figure 25.  Computed temperature along line $ {L_2} $ marked in Fig.22.

    表 1  各计算域的材料参数与入口边界条件

    Table 1.  Material parameters and boundary conditions of each computational domain.

    $ {\varOmega _1} $$ {\varOmega _2} $$ {\varOmega _3} $$ {\varOmega _4} $$ {\varOmega _5} $$ {\varOmega _6} $$ {\varOmega _7} $
    λ1000.62000.62000.610
    $ {T_{{\text{in}}}} $300500300
    v0.10.51.0
    DownLoad: CSV

    表 2  三维流固结构各计算域的材料参数与边界条件

    Table 2.  Material parameters and boundary conditions of each computational domain.

    $ {\varOmega _1} $$ {\varOmega _2} $$ {\varOmega _3} $$ {\varOmega _4} $$ {\varOmega _5} $$ {\varOmega _6} $
    λ10202000.60.60.6
    $ {T_{{\text{in}}}} $300350300
    v0.20.50.2
    DownLoad: CSV

    表 3  三种计算方法的节点数与计算时间比较

    Table 3.  Comparison of total number of nodes and computational time for three methods.

    FLMFLM_fineFLUENTFLUENT_fineCOMSOL
    总节点数1727895827995995194298589570751
    计算时间/s38135115910585
    DownLoad: CSV
  • [1]

    Zienkiewicz O C, Taylor R L, Fox D 2014 The Finite Element Method for Solid and Structural Mechanics (7th Ed.) (Butterworth-Heinemann: Elsevier)

    [2]

    Zienkiewicz O C, Taylor R L, Nithiarasu P 2014 The Finite Element Method for Fluid Dynamics (7th Ed.)(Butterworth-Heinemann: Elsevier)

    [3]

    Wen P H, Cao P, Korakianitis T 2014 Eng. Anal. Bound. Elem. 46 116Google Scholar

    [4]

    Li M, Wen P H 2014 Int. J. Numer. Methods Eng. 99 372Google Scholar

    [5]

    Gao X W, Huang S Z, Cui M, Ruan B, Zhu Q H, Yang K, Lv J, Peng H F 2017 Int. J. Heat Mass Transf. 115 882Google Scholar

    [6]

    Zheng Y T, Gao X W, Lv J, Peng H F 2020 Int. J. Numer. Methods Eng. 121 3722Google Scholar

    [7]

    陶文铨 2001 数值传热学 (西安: 西安交通大学出版社)

    Tao W Q 2001 Numerical Heat Transfer (Xi’an: Xi’an JiaoTong University Press) (in Chinese)

    [8]

    Moukalled F, Mangani L, Darwish M 2015 The Finite Volume Method in Computational Fluid Dynamics: an Advanced Introduction with OpenFOAM and MATLAB (Cham: Springer)

    [9]

    姚振汉, 王海涛 2010 边界元法 (北京: 高等教育出版社)

    Yao Z H, Wang H T 2010 Boundary Element Methods (Beijing: Higher Education Press) (in Chinese)

    [10]

    胡金秀, 高效伟 2016 物理学报 65 014701Google Scholar

    Hu J X, Gao X W 2016 Acta Phys. Sin. 65 014701Google Scholar

    [11]

    张见明 2010 计算机辅助工程 19 5Google Scholar

    Zhang J M 2010 Comput. Aided Eng. 19 5Google Scholar

    [12]

    袁驷 1992 数值计算与计算机应用 13 252Google Scholar

    Yuan S 1992 J. Num. Methods Comput. Applicat. 13 252Google Scholar

    [13]

    Gao X W, Liang Y, Xu B B, Yang K, Peng H F 2019 Eng. Anal. Bound. Elem. 108 422Google Scholar

    [14]

    张雄, 宋康祖, 陆明万 2003 计算力学学报 20 725Google Scholar

    Zhang X, Song Z K, Lu M W 2003 Chin. J. Comput. Mech. 20 725Google Scholar

    [15]

    王东东, 张汉杰, 梁庆文 2016 计算力学学报 33 605Google Scholar

    Wang D D, Zhang H J, Liang Q W 2016 Chinese Journal of Computational Mechanics 33 605Google Scholar

    [16]

    程玉民 2015 无网格方法 (北京: 科学出版社)

    Cheng Y M 2015 Meshless Methods (Beijing: Sciense Press) (in Chinese)

    [17]

    Karageorghis A, Lesnic D, Marin L 2021 J. Eng. Math. 126 10Google Scholar

    [18]

    傅卓佳, 习强, 黄河 2019 力学与工程——数值计算和数据分析 2019 学术会议论文集 第77页

    Fu Z J, Xi Q, Huang H 2019 Mechanics and Engineering — Numerical Computation and Data Analysis Beijing, China, April 19–21, 2019 p77 (in Chinese)

    [19]

    Lv J, Sheng G Y, Gao X W, Zhang H W 2015 Int. J. Comput. Methods 12 1550026Google Scholar

    [20]

    Dolejší V, Feistauer M 2015 Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow (Cham: Springer)

    [21]

    高效伟, 彭海峰, 杨恺, 王静 2015 高等边界单元法 (北京: 科学出版社)

    Gao X W, Peng H F, Yang K, Wang J 2015 Advanced Boundary Element Method (Beijing: Sciense Press) (in Chinese)

    [22]

    王勖成 2003 有限单元法 (北京: 清华大学出版社)

    Wang X C 2003 Finite Element Method (Beijing: Tsinghua University Press) (in Chinese)

    [23]

    高效伟, 徐兵兵, 吕军, 彭海峰 2019 力学学报 51 703Google Scholar

    Gao X W, Xu B B, Lv J, Peng H F 2019 Chin. J. Theor. Appl. Mech. 51 703Google Scholar

    [24]

    Liu H Y, Gao X W, Xu B B 2019 Comput. Fluids 192 104276Google Scholar

    [25]

    Xu B B, Gao X W, Jiang W W, Cui M, Lv J 2019 Eng. Fract. Mech. 218 106575Google Scholar

    [26]

    Gao X W, Ding J X, Cui M, Yang K 2019 Eng. Anal. Bound. Elem. 109 117Google Scholar

    [27]

    Gao X W 2021 The 2021 International Conference on Applied Mathematics, Modeling and Computer Simulation (AMMCS 2021) Wuhan, China, November 13–14, 2021

    [28]

    Gao X W, Liu H Y, Ruan B 2021 Comput. Struct. 243 106411Google Scholar

  • [1] He Xin-Bo, Wei Bing. Explicit and unconditionally stable finite-difference time-domain subgridding algorithm based on hanging variables. Acta Physica Sinica, 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [2] Sun Jia-Kun, Lin Chuan-Dong, Su Xian-Li, Tan Zhi-Cheng, Chen Ya-Lou, Ming Ping-Jian. Solution of the discrete Boltzmann equation: Based on the finite volume method. Acta Physica Sinica, 2024, 73(11): 110504. doi: 10.7498/aps.73.20231984
    [3] Yu Xin-Ru, Cui Ji-Feng, Chen Xiao-Gang, Mu Jiang-Yong, Qiao Yu-Ran. Time period electroosmotic flow of a class of incompressible micropolar fluid in parallel plate microchannels under high Zeta potential. Acta Physica Sinica, 2024, 73(16): 164701. doi: 10.7498/aps.73.20240591
    [4] Zhang Tian-Ge, Ren Mei-Rong, Cui Ji-Feng, Chen Xiao-Gang, Wang Yi-Dan. Rotational electroosmotic slip flow of power-law fluid at high zeta potential in variable-section microchannel. Acta Physica Sinica, 2022, 71(13): 134701. doi: 10.7498/aps.71.20212327
    [5] He Yu-Bo, Tang Xian-Hua, Lin Xiao-Yan. Numerical simulation of a class of FitzHugh-Nagumo systems based on the lattice Boltzmann method. Acta Physica Sinica, 2016, 65(15): 154701. doi: 10.7498/aps.65.154701
    [6] Zhang Qi, Zhang Ran, Song Hai-Ming. A finite volume method for pricing the American lookback option. Acta Physica Sinica, 2015, 64(7): 070202. doi: 10.7498/aps.64.070202
    [7] Du Chao-Fan, Zhang Ding-Guo. A meshfree method based on point interpolation for dynamic analysis of rotating cantilever beams. Acta Physica Sinica, 2015, 64(3): 034501. doi: 10.7498/aps.64.034501
    [8] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [9] Wang Guang-Hui, Wang Lin-Xue, Wang Deng-Shan, Liu Cong-Bo, Shi Yu-Ren. Numerical investigation on the interaction between multi-Compacton of K(m,n,p) equation. Acta Physica Sinica, 2014, 63(18): 180206. doi: 10.7498/aps.63.180206
    [10] Xin Cheng-Yun, Cheng Xiao-Fang, Zhang Zhong-Zheng. Primary spectrum pyrometry based on radiation measurement within a finite solid angle. Acta Physica Sinica, 2013, 62(3): 030702. doi: 10.7498/aps.62.030702
    [11] Qiao Hai-Liang, Wang Yue, Chen Zai-Gao, Zhang Dian-Hui. Full-vectorial finite-difference analysis of modes in waveguide with arbitrary shape. Acta Physica Sinica, 2013, 62(7): 070204. doi: 10.7498/aps.62.070204
    [12] Peng Wu, He Yi-Gang, Fang Ge-Feng, Fan Xiao-Teng. An ameliorative algorithm of two-dimensional Poisson equation based on genetic parallel successive over-relaxation method. Acta Physica Sinica, 2013, 62(2): 020301. doi: 10.7498/aps.62.020301
    [13] Lu Si-Long, Wu Xian-Liang, Ren Xin-Gang, Mei Yi-Cai, Shen Jing, Huang Zhi-Xiang. Study of periodic dispersive structures using splitfield FDTD method. Acta Physica Sinica, 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [14] Yang Xiu-Li, Dai Bao-Dong, Li Zhen-Feng. Meshless local Petrov-Galerkin method with complex variables for elasticity. Acta Physica Sinica, 2012, 61(5): 050204. doi: 10.7498/aps.61.050204
    [15] Zheng Bao-Jing, Dai Bao-Dong. Improved meshless local Petrov-Galerkin method for two-dimensional potential problems. Acta Physica Sinica, 2010, 59(8): 5182-5189. doi: 10.7498/aps.59.5182
    [16] Yin Jing-Chan, Xiao Xiao-Sheng, Yang Chang-Xi. Dynamics of relaxation oscillation caused by stimulated Brillouin scattering in optical fiber and its suppression. Acta Physica Sinica, 2009, 58(12): 8316-8325. doi: 10.7498/aps.58.8316
    [17] Liang Shuang, Lü Yan-Wu. The calculation of electronic structure in GaN/AlN quantum dots with finite element method. Acta Physica Sinica, 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [18] Tan Xin-Yu, Zhang Duan-Ming, Li Zhi-Hua, Guan Li, Li Li. Target ablation characteristics of thin films during nanosecond pulsed laser deposition in the ablation process. Acta Physica Sinica, 2005, 54(8): 3915-3921. doi: 10.7498/aps.54.3915
    [19] Zhao Hong-Dong, Song Dian-You, Zhang Zhi-Feng, Sun Ji ng, Sun Mei, Wu Yi, Wen Xing-Rao. Influence of the potential in n-type DBR on threshold in vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [20] MA JIAN-WEI, YANG HUI-ZHU, ZHU YA-PING. SIMULATION OF ACOUSTIC WAVE PROPAGATION IN COMPLEX MEDIA USING MRFD METHOD. Acta Physica Sinica, 2001, 50(8): 1415-1420. doi: 10.7498/aps.50.1415
Metrics
  • Abstract views:  5019
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2022
  • Accepted Date:  08 May 2022
  • Available Online:  30 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回