Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of a class of FitzHugh-Nagumo systems based on the lattice Boltzmann method

He Yu-Bo Tang Xian-Hua Lin Xiao-Yan

Citation:

Numerical simulation of a class of FitzHugh-Nagumo systems based on the lattice Boltzmann method

He Yu-Bo, Tang Xian-Hua, Lin Xiao-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The lattice Boltzmann method (LBM) was proposed as a novel mesoscopic numerical method, and is widely used to simulate complex nonlinear fluid systems. In this paper, we develop a lattice Boltzmann model with amending function and source term to solve a class of initial value problems of the FitzHugh Nagumo systems, which arises in the periodic oscillations of neuronal action potential under constant current stimulation higher than the threshold value. Firstly, we construct a non-standard lattice Boltzmann model with the proper amending function and source term. For different evolution equations, local equilibrium distribution functions and amending function are selected, and the nonlinear FitzHugh Nagumo systems can be recovered correctly by using the Chapman Enskog multi-scale analysis. Secondly, through the integral technique, we obtain a new method on how to construct the amending function. In order to guarantee the stability of the present model, the L stability of the lattice Boltzmann model is analyzed by using the extremum principle, and we get a sufficient condition for the stability that is the initial value u0(x) must satisfy |u0(x)|1 and the parameters must satisfy i-(1+)(t)/(x), (i=1-4). Thirdly, based on the results of the grid independent analysis and numerical simulation, it can be concluded that the present model is convergent with two order space accuracy. Finally, some initial boundary value problems with analytical solutions are simulated to verify the effectiveness of the present model. The results are compared with the analytical solutions and numerical solutions obtained by the modified finite difference method (MFDM). It is shown that the numerical solutions agree well with the analytical solutions and the global relative errors obtained by the present model are smaller than the MFDM. Furthermore, some test problems without analytical solutions are numerically studied by the present model and the MFDM. The results show that the numerical solutions obtained by the present model are in good agreement with those obtained by the MFDM, which can validate the effectiveness and stability of the LBM. In conclusion, our model not only can enrich the applications of the lattice Boltzmann model in simulating nonlinear partial difference equations, but also help to provide valuable references for solving more complicated nonlinear partial difference systems. Therefore, this research has important theoretical significance and application value.
      Corresponding author: He Yu-Bo, heyinprc@csu.edu.cn;tangxh@csu.edu.cn ; Tang Xian-Hua, heyinprc@csu.edu.cn;tangxh@csu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 11471137, 11571370, 11501232).
    [1]

    Kaya D 2001 Int. J. Math. Math. Sci. 27 675

    [2]

    Abdou M A, Soliman A A 2005 J. Comput. Appl. Math. 181 245

    [3]

    Ram J, Gupta R K, Vikas K 2014 Ain. Sha. Eng. J. 5 1343

    [4]

    Xu A G, Zhang G C, Ying Y J {2015 Acta Phys. Sin. 64 184701 (in Chinese) [许爱国, 张广财, 应阳君 2015 物理学报 64 184701]

    [5]

    Ollila S, Denniston C, Karttunen M, Nissila T 2011 J. Chem. Phys. 134 064902

    [6]

    Fallah K, Khaya M, Hossein B M, Ghaderi A, Fattahi E {2012 J. Non-Newton. Flui. 177 1

    [7]

    Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703 (in Chinese) [毛威, 郭照立, 王亮 2013 物理学报 62 084703]

    [8]

    Yang T Z, Ji S D, Yang X D, Fang B 2014 Int. J. Eng. Sci. 76 47

    [9]

    Koido T, Furusawa T, Moriyama K 2008 J. Power. Sour. 175 127

    [10]

    Zhang W, Wang Y, Qian Y H 2015 Chin. Phys. B 24 064701

    [11]

    Qian Y, Succi S, Orszag S {1995 Annu. Rev. Comput. Phys. 195 195

    [12]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid. Mech. 30 329

    [13]

    Zu Y Q, He S 2013 Phys. Rev. E 87 043301

    [14]

    Shu C W, Osher S {1998 J. Comput. Phys. 77 439

    [15]

    Duan Y L, Liu R X 2007 J. Comp. Appl. Math. 206 432

    [16]

    Zhang J Y, Yan G W 2008 Physica A 387 4771

    [17]

    Ma C F, Tang J, Chen X H {2007 Chin. J. Appl. Mech. 24 519 (in Chinese) [马昌凤, 唐嘉, 陈小红 2007 应用力学学报 24 519]

    [18]

    Ma C F 2005 Chin. Phys. Lett. 22 2313

    [19]

    He Y B, Lin X Y, Dong X L {2013 Acta Phys. Sin. 62 194701 (in Chinese) [何郁波, 林晓艳, 董晓亮 2013 物理学报 62 194701]

    [20]

    Zhou Z Q, He Y B {2012 Pure. Appl. Math. 28 29 (in Chinese) [周志强, 何郁波 2012 纯粹数学与应用数学 28 29]

    [21]

    Yung K L, Lei Y M, Xu Y 2010 Chin. Phys. B 19 010503

    [22]

    FitzHugh R {1961 Biophys. J. 6 445

    [23]

    Nagumo J S, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061

    [24]

    Gan C B, Matja P, Wang Q Y 2010 Chin. Phys. B 19 040508

    [25]

    Song Y L 2014 Chin. Phys. B 23 080504

    [26]

    Prager T, Neiman A B, Schimansky G L 2009 Euro. Phys. J. B 69 119

    [27]

    Llibre J, Valls C 2010 J. Geom. Phys. 60 1974

    [28]

    Lv Y, Wang W 2010 Nonlinear Anal. Real. 11 3091

    [29]

    Hsu C H, Yang T H, Yang C R 2009 J. Differ. Equations 247 1185

    [30]

    Gaiko V A 2011 Nonlinear Anal. Theor. 74 7532

    [31]

    Olmos D, Shizgal B {2008 Math. Comput. Simulat. 79 2258

    [32]

    Browne P, Nomoniat E, Mahomed F M 2008 Nonlinear. Anal. Theor. 68 1006

    [33]

    Kawahara T, Tanaka M 1983 Phys. Lett. A 97 311

    [34]

    Nucci M C, Clarkson P A 1992 Phys. Lett. A 164 49

    [35]

    Li H Y, Guo Y C {2006 Appl. Math. Comput. 180 524

    [36]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

  • [1]

    Kaya D 2001 Int. J. Math. Math. Sci. 27 675

    [2]

    Abdou M A, Soliman A A 2005 J. Comput. Appl. Math. 181 245

    [3]

    Ram J, Gupta R K, Vikas K 2014 Ain. Sha. Eng. J. 5 1343

    [4]

    Xu A G, Zhang G C, Ying Y J {2015 Acta Phys. Sin. 64 184701 (in Chinese) [许爱国, 张广财, 应阳君 2015 物理学报 64 184701]

    [5]

    Ollila S, Denniston C, Karttunen M, Nissila T 2011 J. Chem. Phys. 134 064902

    [6]

    Fallah K, Khaya M, Hossein B M, Ghaderi A, Fattahi E {2012 J. Non-Newton. Flui. 177 1

    [7]

    Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703 (in Chinese) [毛威, 郭照立, 王亮 2013 物理学报 62 084703]

    [8]

    Yang T Z, Ji S D, Yang X D, Fang B 2014 Int. J. Eng. Sci. 76 47

    [9]

    Koido T, Furusawa T, Moriyama K 2008 J. Power. Sour. 175 127

    [10]

    Zhang W, Wang Y, Qian Y H 2015 Chin. Phys. B 24 064701

    [11]

    Qian Y, Succi S, Orszag S {1995 Annu. Rev. Comput. Phys. 195 195

    [12]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid. Mech. 30 329

    [13]

    Zu Y Q, He S 2013 Phys. Rev. E 87 043301

    [14]

    Shu C W, Osher S {1998 J. Comput. Phys. 77 439

    [15]

    Duan Y L, Liu R X 2007 J. Comp. Appl. Math. 206 432

    [16]

    Zhang J Y, Yan G W 2008 Physica A 387 4771

    [17]

    Ma C F, Tang J, Chen X H {2007 Chin. J. Appl. Mech. 24 519 (in Chinese) [马昌凤, 唐嘉, 陈小红 2007 应用力学学报 24 519]

    [18]

    Ma C F 2005 Chin. Phys. Lett. 22 2313

    [19]

    He Y B, Lin X Y, Dong X L {2013 Acta Phys. Sin. 62 194701 (in Chinese) [何郁波, 林晓艳, 董晓亮 2013 物理学报 62 194701]

    [20]

    Zhou Z Q, He Y B {2012 Pure. Appl. Math. 28 29 (in Chinese) [周志强, 何郁波 2012 纯粹数学与应用数学 28 29]

    [21]

    Yung K L, Lei Y M, Xu Y 2010 Chin. Phys. B 19 010503

    [22]

    FitzHugh R {1961 Biophys. J. 6 445

    [23]

    Nagumo J S, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061

    [24]

    Gan C B, Matja P, Wang Q Y 2010 Chin. Phys. B 19 040508

    [25]

    Song Y L 2014 Chin. Phys. B 23 080504

    [26]

    Prager T, Neiman A B, Schimansky G L 2009 Euro. Phys. J. B 69 119

    [27]

    Llibre J, Valls C 2010 J. Geom. Phys. 60 1974

    [28]

    Lv Y, Wang W 2010 Nonlinear Anal. Real. 11 3091

    [29]

    Hsu C H, Yang T H, Yang C R 2009 J. Differ. Equations 247 1185

    [30]

    Gaiko V A 2011 Nonlinear Anal. Theor. 74 7532

    [31]

    Olmos D, Shizgal B {2008 Math. Comput. Simulat. 79 2258

    [32]

    Browne P, Nomoniat E, Mahomed F M 2008 Nonlinear. Anal. Theor. 68 1006

    [33]

    Kawahara T, Tanaka M 1983 Phys. Lett. A 97 311

    [34]

    Nucci M C, Clarkson P A 1992 Phys. Lett. A 164 49

    [35]

    Li H Y, Guo Y C {2006 Appl. Math. Comput. 180 524

    [36]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

  • [1] Yu Xin-Ru, Cui Ji-Feng, Chen Xiao-Gang, Mu Jiang-Yong, Qiao Yu-Ran. Time period electroosmotic flow of a class of incompressible micropolar fluid in parallel plate microchannels under high Zeta potential. Acta Physica Sinica, 2024, 73(16): 164701. doi: 10.7498/aps.73.20240591
    [2] Feng Jing-Sen, Min Jing-Chun. Lattice Boltzmann method simulation of two-phase flow in horizontal channel. Acta Physica Sinica, 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [3] Zhang Tian-Ge, Ren Mei-Rong, Cui Ji-Feng, Chen Xiao-Gang, Wang Yi-Dan. Rotational electroosmotic slip flow of power-law fluid at high zeta potential in variable-section microchannel. Acta Physica Sinica, 2022, 71(13): 134701. doi: 10.7498/aps.71.20212327
    [4] Gao Xiao-Wei, Ding Jin-Xing, Liu Hua-Yu. Finite line method and its application in coupled heat transfer between fluid-solid domains. Acta Physica Sinica, 2022, 71(19): 190201. doi: 10.7498/aps.71.20220833
    [5] Zhang Qian-Yi, Wei Hua-Jian, Li Hua-Bing. Multi-segment lymphatic vessel model based on lattice Boltzmann method. Acta Physica Sinica, 2021, 70(21): 210501. doi: 10.7498/aps.70.20210514
    [6] Zhang Shi-Jie, Wang Ying-Ming, Wang Qi, Li Chen-Yu, Li Ri. Simulation of dendrite collision behavior based on cellular automata-lattice Boltzmann model. Acta Physica Sinica, 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [7] Xu Wei-Wei, Bai Ming-Zhu, Lin Qiang, Hu Zheng-Hui. Magnetocardiogram forward problem based on personalized three-dimensional heart-torso model. Acta Physica Sinica, 2019, 68(17): 178702. doi: 10.7498/aps.68.20190387
    [8] Feng Dai-Li, Feng Yan-Hui, Shi Jun. Lattice Boltzamn model of phonon heat conduction in mesoporous composite material. Acta Physica Sinica, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [9] Feng Xin, Li Chuan, Hu Kai-Qun. Infrared and visible image fusion based on deep Boltzmann model. Acta Physica Sinica, 2014, 63(18): 184202. doi: 10.7498/aps.63.184202
    [10] Wang Hui, Huang Zhi-Xiang, Wu Xian-Liang, Ren Xin-Gang, Wu Bo. Symplectic FDTD algorithm for the simulations of double dispersive materials. Acta Physica Sinica, 2014, 63(7): 070203. doi: 10.7498/aps.63.070203
    [11] Wang Guang-Hui, Wang Lin-Xue, Wang Deng-Shan, Liu Cong-Bo, Shi Yu-Ren. Numerical investigation on the interaction between multi-Compacton of K(m,n,p) equation. Acta Physica Sinica, 2014, 63(18): 180206. doi: 10.7498/aps.63.180206
    [12] Sun Dong-Ke, Xiang Nan, Chen Ke, Ni Zhong-Hua. Lattice Boltzmann modeling of particle inertial migration in a curved channel. Acta Physica Sinica, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [13] Peng Wu, He Yi-Gang, Fang Ge-Feng, Fan Xiao-Teng. An ameliorative algorithm of two-dimensional Poisson equation based on genetic parallel successive over-relaxation method. Acta Physica Sinica, 2013, 62(2): 020301. doi: 10.7498/aps.62.020301
    [14] Gao Jia-Zhen, Xie Ling-Ling, Xie Wei-Miao, Gao Ji-Hua. Control of spiral waves in FitzHugh-Nagumo systems. Acta Physica Sinica, 2011, 60(8): 080503. doi: 10.7498/aps.60.080503
    [15] Zhou Feng-Mao, Sun Dong-Ke, Zhu Ming-Fang. Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys. Acta Physica Sinica, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [16] Liu Yong, Xie Yong. Dynamical characteristics of the fractional-order FitzHugh-Nagumo model neuron and its synchronization. Acta Physica Sinica, 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [17] Yin Jing-Chan, Xiao Xiao-Sheng, Yang Chang-Xi. Dynamics of relaxation oscillation caused by stimulated Brillouin scattering in optical fiber and its suppression. Acta Physica Sinica, 2009, 58(12): 8316-8325. doi: 10.7498/aps.58.8316
    [18] Tan Xin-Yu, Zhang Duan-Ming, Li Zhi-Hua, Guan Li, Li Li. Target ablation characteristics of thin films during nanosecond pulsed laser deposition in the ablation process. Acta Physica Sinica, 2005, 54(8): 3915-3921. doi: 10.7498/aps.54.3915
    [19] Xu You-Sheng, Li Hua-Bing, Fang Hai-Ping, Huang Guo-Xiang. Lattice Boltzmann simulation for nonlinear flow in porous media with coupling reaction. Acta Physica Sinica, 2004, 53(3): 773-777. doi: 10.7498/aps.53.773
    [20] Zhao Hong-Dong, Song Dian-You, Zhang Zhi-Feng, Sun Ji ng, Sun Mei, Wu Yi, Wen Xing-Rao. Influence of the potential in n-type DBR on threshold in vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
Metrics
  • Abstract views:  6058
  • PDF Downloads:  428
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2016
  • Accepted Date:  25 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回