Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

On modeling and physical laws of isentropic speed of sound in dense gas-particle two-phase compressible flows

Chen Da-Wei Wang Pei Yu Xi-Jun Sun Hai-Quan Ma Dong-Jun

Citation:

On modeling and physical laws of isentropic speed of sound in dense gas-particle two-phase compressible flows

Chen Da-Wei, Wang Pei, Yu Xi-Jun, Sun Hai-Quan, Ma Dong-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Study of isentropic sound speed of two-phase or multiphase flow has theoretical significance and wide application background. As is well known, the speed of sound in fluid containing particles in suspension differs from that in the pure fluid. In the particular case of bubbly liquids (gas liquid two-phase flow), the researches find that the differences can be drastic. Up to now, the isentropic speed of sound in the flow field with a small volume fraction of bubbles (less than 1%), has been investigated fully both experimentally and theoretically. In this paper, we consider another situation, as the case with solid particles in gas, which is the so-called gas particle two-phase flow. Although many results have been obtained in gas liquid two-phase flow, there is still a lot of basic work to do due to the large differences in the flow structure and flow pattern between gas particle two-phase flow and gas liquid two-phase flow. Treating the gas particle suspension as the relaxed equilibrium, thermodynamic arguments are used to obtain the isentropic speed of sound. Unlike the existing work, we are dedicated to developing the computational model under dense condition. The space volume occupied by particle phase and the interaction between particles are overall considered, then a new formula of isentropic sound speed is derived. The new formula includes formulae of the pure gas flow and the already existing dilute gas particle two-phase flow as a special case. On the one hand, the correctness of our formula is verified. On the other hand, the new formula is more general. The variations of sound speed with different mass fractions of particle phase are analyzed. The theoretical calculation results show that the overall physical law of sound speed change is that with the increase of the particle mass fraction, the sound speed first decreases and then increases. The velocity of sound propagation in gas particle two-phase flow is far smaller than in pure gas in a wide range, so it is easy to reach the supersonic condition. When the particle volume fraction is below 10%, the result is consistent with Prandtl theoretical analysis. In this range, the influences of the particle phase pressure modeling parameters can be neglected. When the particle volume fraction is more than 10%, the particle phase pressure modeling parameters produce influences. Furthermore the corresponding physical principles and the mechanisms are discussed and revealed. The new formula and physical understandings obtained in this paper will provide a theoretical support for the researches of dense gas particle two-phase compressible flow and related engineering applications.
      Corresponding author: Yu Xi-Jun, yuxj@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1530261, 11571002) and the Science Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101021, 2015B0201043).
    [1]

    Liu D Y 1990 Chin. J. Theoret. Appl. Mech. 22 660 (in Chinese) [刘大有 1990 力学学报 22 660]

    [2]

    Hu M B, Dang S C, Ma Q, Xia W D 2015 Chin. Phys. B 24 074502

    [3]

    Nichita D V, Khalid P, Broseta D 2010 Fluid Phase Equilibr. 291 95

    [4]

    Liu X Z, Wang Y X, Zhu S G, Li G H 2007 J. Engineer. Thermophys. 28 201 (in Chinese) [刘心志, 王益祥, 朱曙光, 李光辉 2007 工程热物理学报 28 201]

    [5]

    Holloway W, Sundaresan S 2014 Chem. Eng. Sci. 108 67

    [6]

    Valverde J M 2013 Soft Matter 9 8792

    [7]

    Liu B, Fang D Y, Xia Z X, Wang L 2013 J. Propuls. Technol. 34 8 (in Chinese) [刘冰, 方丁酉, 夏智勋, 王林 2013 推进技术 34 8]

    [8]

    Saito T 2002 J. Comput. Phys. 176 129

    [9]

    Liu L, Wang Y S, Zhou F D 1999 Chin. J. Appl. Mechan. 16 22 (in Chinese) [刘磊, 王跃社, 周芳德 1999 应用力学学报 16 22]

    [10]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 物理学 报 61 234703]

    [11]

    Nguyen D L, Winter E R F, Greirer M 1981 Int. J. Multiphas. Flow 7 311

    [12]

    Zhao J F, Li W 1999 J. Basic Sci. Engineer. 7 321 (in Chinese) [赵建福, 李炜 1999 应用基础与工程科学学报 7 321]

    [13]

    Zeng D L, Zhao L J, Xiao Y 2001 Proceedings of The International Conference on Energy Conversion and Application Wuhan, China 200 65

    [14]

    Huang F, Bai B F, Guo L J 2004 Prog. Nat. Sci. 14 344

    [15]

    Chaudhuri A, Osterhoudt C F, Sinha D N 2012 ASME J. Fluid. Eng. 134 101301

    [16]

    Zhao L J, Li B, Gao H, Li D S, Yuan Y X, Zeng D L 2007 J. Engineer. Thermophys. 28 388 (in Chinese) [赵良举, 李斌, 高虹, 李德胜, 袁悦祥, 曾丹苓 2007 工程热物理学报 28 388]

    [17]

    Temkin S 1992 Phys. Fluid A 4 2399

    [18]

    Fang D Y 1988 Two-phase Fluid Dynamics (Changsha: National University of Defense Technology Press) p14-22 (in Chinese) [方丁酉 1988 两相流 动力学(长沙: 国防科技大学出版社) 第 14-22 页]

    [19]

    Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: National Defence of Industry Press) pp40-49, 206 (in Chinese) [李维新 2003 一维不定常流与冲击波(北京: 国防工业出版社) 第 40-49, 206页]

    [20]

    Snider D M 2001 J. Comput. Phys. 170 523

    [21]

    Harris S E, Crighton D G 1994 J. Fluid Mech. 266 243

    [22]

    Auzerais F M, Jackson R, Russel W B 1988 J. Fluid Mech. 195 437

  • [1]

    Liu D Y 1990 Chin. J. Theoret. Appl. Mech. 22 660 (in Chinese) [刘大有 1990 力学学报 22 660]

    [2]

    Hu M B, Dang S C, Ma Q, Xia W D 2015 Chin. Phys. B 24 074502

    [3]

    Nichita D V, Khalid P, Broseta D 2010 Fluid Phase Equilibr. 291 95

    [4]

    Liu X Z, Wang Y X, Zhu S G, Li G H 2007 J. Engineer. Thermophys. 28 201 (in Chinese) [刘心志, 王益祥, 朱曙光, 李光辉 2007 工程热物理学报 28 201]

    [5]

    Holloway W, Sundaresan S 2014 Chem. Eng. Sci. 108 67

    [6]

    Valverde J M 2013 Soft Matter 9 8792

    [7]

    Liu B, Fang D Y, Xia Z X, Wang L 2013 J. Propuls. Technol. 34 8 (in Chinese) [刘冰, 方丁酉, 夏智勋, 王林 2013 推进技术 34 8]

    [8]

    Saito T 2002 J. Comput. Phys. 176 129

    [9]

    Liu L, Wang Y S, Zhou F D 1999 Chin. J. Appl. Mechan. 16 22 (in Chinese) [刘磊, 王跃社, 周芳德 1999 应用力学学报 16 22]

    [10]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 物理学 报 61 234703]

    [11]

    Nguyen D L, Winter E R F, Greirer M 1981 Int. J. Multiphas. Flow 7 311

    [12]

    Zhao J F, Li W 1999 J. Basic Sci. Engineer. 7 321 (in Chinese) [赵建福, 李炜 1999 应用基础与工程科学学报 7 321]

    [13]

    Zeng D L, Zhao L J, Xiao Y 2001 Proceedings of The International Conference on Energy Conversion and Application Wuhan, China 200 65

    [14]

    Huang F, Bai B F, Guo L J 2004 Prog. Nat. Sci. 14 344

    [15]

    Chaudhuri A, Osterhoudt C F, Sinha D N 2012 ASME J. Fluid. Eng. 134 101301

    [16]

    Zhao L J, Li B, Gao H, Li D S, Yuan Y X, Zeng D L 2007 J. Engineer. Thermophys. 28 388 (in Chinese) [赵良举, 李斌, 高虹, 李德胜, 袁悦祥, 曾丹苓 2007 工程热物理学报 28 388]

    [17]

    Temkin S 1992 Phys. Fluid A 4 2399

    [18]

    Fang D Y 1988 Two-phase Fluid Dynamics (Changsha: National University of Defense Technology Press) p14-22 (in Chinese) [方丁酉 1988 两相流 动力学(长沙: 国防科技大学出版社) 第 14-22 页]

    [19]

    Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: National Defence of Industry Press) pp40-49, 206 (in Chinese) [李维新 2003 一维不定常流与冲击波(北京: 国防工业出版社) 第 40-49, 206页]

    [20]

    Snider D M 2001 J. Comput. Phys. 170 523

    [21]

    Harris S E, Crighton D G 1994 J. Fluid Mech. 266 243

    [22]

    Auzerais F M, Jackson R, Russel W B 1988 J. Fluid Mech. 195 437

  • [1] Sun Jia-Kun, Lin Chuan-Dong, Su Xian-Li, Tan Zhi-Cheng, Chen Ya-Lou, Ming Ping-Jian. Solution of the discrete Boltzmann equation: Based on the finite volume method. Acta Physica Sinica, 2024, 73(11): 110504. doi: 10.7498/aps.73.20231984
    [2] Liu Bo, Xing Pu, Ding Song, Xie Ming-Jun, Feng Lin, Shi Xiao-Tian. A new preconditioning algorithm for computable compressible flow. Acta Physica Sinica, 2022, 71(12): 124701. doi: 10.7498/aps.71.20220102
    [3] Fan Xing-Hua, Tan Da-Peng, Li Lin, Yin Zi-Chao, Wang Tong. Modeling and solution method of gas-liquid-solid three-phase flow mixing. Acta Physica Sinica, 2021, 70(12): 124501. doi: 10.7498/aps.70.20202126
    [4] Peng Xu, Li Bin, Wang Shun-Yao, Rao Guo-Ning, Chen Wang-Hua. Gas-liquid two-phase flow of liquid film breaking process under shock wave. Acta Physica Sinica, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [5] Zuo Juan-Li, Yang Hong, Wei Bing-Qian, Hou Jing-Ming, Zhang Kai. Numerical simulation of gas-liquid two-phase flow in gas lift system. Acta Physica Sinica, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [6] Lou Qin, Huang Yi-Fan, Li Ling. Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media. Acta Physica Sinica, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [7] Hu Jia-Yi, Zhang Wen-Huan, Chai Zhen-Hua, Shi Bao-Chang, Wang Yi-Hang. Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows. Acta Physica Sinica, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [8] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [9] Li Dong-Dong, Wang Ge, Zhang Bin. Flow and mixing in shock-accelerated elliptic helium gas cylinder process. Acta Physica Sinica, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [10] Zhai Lu-Sheng, Jin Ning-De. Multi-scale cross-correlation characteristics of void fraction wave propagation for gas-liquid two-phase flows in small diameter pipe. Acta Physica Sinica, 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [11] Chen Ping, Du Ya-Wei, Xue You-Lin. Element area analysis of chaotic morphology of verical gas-liquid two-phase flow. Acta Physica Sinica, 2016, 65(3): 034701. doi: 10.7498/aps.65.034701
    [12] Zhang Peng, Hong Yan-Ji, Ding Xiao-Yu, Shen Shuang-Yan, Feng Xi-Ping. Effect of plasma on boron-based two-phase flow diffusion combustion. Acta Physica Sinica, 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [13] Zhao Ji-Bo, Sun Cheng-Wei, Gu Zhuo-Wei, Zhao Jian-Heng, Luo Hao. Magneto-hydrodynamic calculation of magnetic flux compression with explosion driven solid liners and analysis of quasi-isentropic process. Acta Physica Sinica, 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [14] Ding Hong-Bing, Wang Chao, Zhao Ya-Kun. Analytical calculation and evolutionary regression method for isentropic exponent of hydrogen gas at the throat of critical nozzle. Acta Physica Sinica, 2014, 63(16): 164701. doi: 10.7498/aps.63.164701
    [15] Gao Zhong-Ke, Hu Li-Dan, Zhou Ting-Ting, Jin Ning-De. Limited penetrable visibility graph from two-phase flow for investigating flow pattern dynamics. Acta Physica Sinica, 2013, 62(11): 110507. doi: 10.7498/aps.62.110507
    [16] Yao Xiong-Liang, Ye Xi, Zhang A-Man. Cavitation bubble in compressible fluid subjected to traveling wave. Acta Physica Sinica, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [17] Zhao Jun-Ying, Jin Ning-De. Dynamic characteristics of multivariate graph centrobaric trajectory in phase space of two-phase flow. Acta Physica Sinica, 2012, 61(9): 094701. doi: 10.7498/aps.61.094701
    [18] Wei Wei, Lu Lu-Yi, Gu Zhao-Lin. Modeling and simulation of electrification of wind-blown-sand two-phase flow. Acta Physica Sinica, 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [19] Sun Bin, Wang Er-Peng, Zheng Yong-Jun. Time-frequency spectral analysis of gas-liquid two-phase flow’s fluctuations. Acta Physica Sinica, 2011, 60(1): 014701. doi: 10.7498/aps.60.014701
    [20] Wang Fei, He Feng. A numerical method for two-phase flow in micro channels and its application to droplet control by electrowetting on dielectric. Acta Physica Sinica, 2006, 55(3): 1005-1010. doi: 10.7498/aps.55.1005
Metrics
  • Abstract views:  7302
  • PDF Downloads:  229
  • Cited By: 0
Publishing process
  • Received Date:  07 December 2015
  • Accepted Date:  07 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回