Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Element area analysis of chaotic morphology of verical gas-liquid two-phase flow

Chen Ping Du Ya-Wei Xue You-Lin

Citation:

Element area analysis of chaotic morphology of verical gas-liquid two-phase flow

Chen Ping, Du Ya-Wei, Xue You-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to better understand the variation of flow structure with delay time, we propose the element area (EA) of attractor morphology parameter in this paper. First, the conductance fluctuating signals and adaptive optimal kernel time-frequency representations of different gas-liquid flows are shown, we can find that flow pattern evolution is always accompanied by the numerical and frequency changes of large amplitude fluctuation (LAF). Then three kinds of signals, i. e., rossler signal, white noise and sinusoidal signal with multi-components, are used for analyzing the simulations, and the results indicate that the greater the frequency of LAF, the smaller the delay time of first crest of EA( peak ) is, and that the more the LAF, the bigger the peak value of first crest of EA(hpeak) is. Additionally, we use the above rule to analyze the conductance fluctuating signals measured from upward gas-liquid two-phase flow experiments and the signal length is selected to be 10 s for analysis. When the water superficial velocity is fixed to be 0.1138 m/s and the gas superficial velocity is gradually increased, we find that the peak is constant and hpeak changes up and down at bubble flow. When the flow pattern evolves into bubble-slug transition flow, the peak begins to turn bigger, and when the flow pattern evolves into slug flow, the peak becomes constant again while the hpeak increases monotonically with the gas flow rate increasing. The peak begins to become smaller as the flow pattern evolves from slug flow into churn flow, and we can find that the peak and hpeak of transition flow are alike. The peak and hpeak of bubble flow and churn flow are also alike because their dynamical mechanisms are similar but the downward trend of bubble flow is more gently than that of churn flow. When the water superficial velocity is fixed to be 0.2719 m/s, we can find similar variations of peak and hpeak to the above. Finally we determine the fall ratio (Rf) which is the ratio of the difference between the first crest and the first trough of EA and the hpeak, and then quantitatively distinguish three typical flow patterns, i.e., bubble flow, slug flow and churn flow by the Rf - peak distribution.
      Corresponding author: Chen Ping, daoke4587@163.com
    [1]

    Hewitt G F 1980 Measurement of Two-phase Flow Parameters (London: Academic Press)

    [2]

    Taitel Y, Barnea D, Dukler A E 1980 AICHEJ 26 345

    [3]

    Pao W K S, Lewis R W 2002 Comput. Methods Appl. Mech. Engrg. 191 2631

    [4]

    Padiala N T, VanderHeydena W B, Rauenzahna R M, Yarbrob S L 2000 Chem. Eng. Sci. 55 3261

    [5]

    Jones J O C, Zuber N 1975 Int. J. Multiphase Flow 2 273

    [6]

    Song C H, No H C, Chung M K 1995 Int. J. Multiphase Flow 21 381

    [7]

    Sun B, Wang E P, Zheng Y J 2011 Acta Phys. Sin. 60 014701 (in Chinese) [孙斌, 王二朋, 郑永军 2011 物理学报 textbf60 014701]

    [8]

    Du M, Jin N D, Gao Z K, Wang Z Y, Zhai L S 2012 Int. J. Multiphase Flow 41 91

    [9]

    Daw C S, Finney C E A, Vasudevan M, van Goor N A, Nguyen K, Bruns D D, Kostelich E J, Grebogi C, Ott E, Yorke J A 1995 Phys. Rev. Lett. 75 2308

    [10]

    10 Gandhi A B, Joshi J B, Kulkarni A A, Jayaraman V K 2008 Int. J. Multiphase Flow 34 1099

    [11]

    Wang Z Y, Jin N D, Gao Z K, Zong Y B, Wang T 2010 Chem. Eng. Sci. 65 5226

    [12]

    Gao Z K, Zhang X W, Du M, Jin N D 2013 Phys. Lett. A 377 457

    [13]

    Llaur F X, Llop M F 2006 Int. J. Multiphase Flow 32 1397

    [14]

    Diks C, van Zwet W R, Takens F, DeGoede J 1996 Phys. Rev. E 53 2169

    [15]

    van Ommen J R, Coppens M O, van den Bleek C M, Schouten J C 2000 AIChE J. 46 2183

    [16]

    Nijenhuis J, Korbee R, Lensselink J, Kiel J H A, van Ommen J R 2007 Chem. Eng. Sci. 62 644

    [17]

    Bartels M, Nijenhuis J, Lensselink J, Siedlecki M, de Jong W, Kapteijin F, van Ommen J R 2009 Energy Fuels 23 157

    [18]

    Zhao J Ying, Jin N D, Gao Z K, Du M, Wang Z Y 2014 Chin. Phys. B 23 034702

    [19]

    Zheng G B, Jin N D, Wang Z Y, Hu N N 2008 J. Tianjin Univ. 41 919 (in Chinese) [郑桂波, 金宁德, 王振亚, 胡娜娜 2008 天津大学学报 41 919]

    [20]

    Zong Y B, Jin N D, Wang Z Y, Gao Z K, Wang C 2010 Int. J. Multiphase Flow 36 166

    [21]

    Zong Y B, Jin N D, Wang Z Y 2009 Acta Phys. Sin. 57 7544 (in Chinese) [宗艳波, 金宁德, 王振亚 2009 物理学报 57 7544]

    [22]

    Llop M F, Jand N, Gallucci K, Llaur F X 2012 Chem. Engineer. Sci. 71 252

    [23]

    Takens F 1981 Dynamical System and Turbulence, Lecture Notes in Mathematics (Berlin: Springer-Verlag) p366

    [24]

    Zheng G B 2009 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [郑桂波 2009 博士学位论文 (天津: 天津大学)]

    [25]

    Rossler O E 1976 Phys. Lett. A 57 397

    [26]

    You R Y, Chen Z, Xu S C, Wu B X 2004 Acta Phys. Sin. 53 2882 (in Chinese) [游荣义, 陈忠, 徐慎初, 吴伯僖 2004 物理学报 53 2882]

  • [1]

    Hewitt G F 1980 Measurement of Two-phase Flow Parameters (London: Academic Press)

    [2]

    Taitel Y, Barnea D, Dukler A E 1980 AICHEJ 26 345

    [3]

    Pao W K S, Lewis R W 2002 Comput. Methods Appl. Mech. Engrg. 191 2631

    [4]

    Padiala N T, VanderHeydena W B, Rauenzahna R M, Yarbrob S L 2000 Chem. Eng. Sci. 55 3261

    [5]

    Jones J O C, Zuber N 1975 Int. J. Multiphase Flow 2 273

    [6]

    Song C H, No H C, Chung M K 1995 Int. J. Multiphase Flow 21 381

    [7]

    Sun B, Wang E P, Zheng Y J 2011 Acta Phys. Sin. 60 014701 (in Chinese) [孙斌, 王二朋, 郑永军 2011 物理学报 textbf60 014701]

    [8]

    Du M, Jin N D, Gao Z K, Wang Z Y, Zhai L S 2012 Int. J. Multiphase Flow 41 91

    [9]

    Daw C S, Finney C E A, Vasudevan M, van Goor N A, Nguyen K, Bruns D D, Kostelich E J, Grebogi C, Ott E, Yorke J A 1995 Phys. Rev. Lett. 75 2308

    [10]

    10 Gandhi A B, Joshi J B, Kulkarni A A, Jayaraman V K 2008 Int. J. Multiphase Flow 34 1099

    [11]

    Wang Z Y, Jin N D, Gao Z K, Zong Y B, Wang T 2010 Chem. Eng. Sci. 65 5226

    [12]

    Gao Z K, Zhang X W, Du M, Jin N D 2013 Phys. Lett. A 377 457

    [13]

    Llaur F X, Llop M F 2006 Int. J. Multiphase Flow 32 1397

    [14]

    Diks C, van Zwet W R, Takens F, DeGoede J 1996 Phys. Rev. E 53 2169

    [15]

    van Ommen J R, Coppens M O, van den Bleek C M, Schouten J C 2000 AIChE J. 46 2183

    [16]

    Nijenhuis J, Korbee R, Lensselink J, Kiel J H A, van Ommen J R 2007 Chem. Eng. Sci. 62 644

    [17]

    Bartels M, Nijenhuis J, Lensselink J, Siedlecki M, de Jong W, Kapteijin F, van Ommen J R 2009 Energy Fuels 23 157

    [18]

    Zhao J Ying, Jin N D, Gao Z K, Du M, Wang Z Y 2014 Chin. Phys. B 23 034702

    [19]

    Zheng G B, Jin N D, Wang Z Y, Hu N N 2008 J. Tianjin Univ. 41 919 (in Chinese) [郑桂波, 金宁德, 王振亚, 胡娜娜 2008 天津大学学报 41 919]

    [20]

    Zong Y B, Jin N D, Wang Z Y, Gao Z K, Wang C 2010 Int. J. Multiphase Flow 36 166

    [21]

    Zong Y B, Jin N D, Wang Z Y 2009 Acta Phys. Sin. 57 7544 (in Chinese) [宗艳波, 金宁德, 王振亚 2009 物理学报 57 7544]

    [22]

    Llop M F, Jand N, Gallucci K, Llaur F X 2012 Chem. Engineer. Sci. 71 252

    [23]

    Takens F 1981 Dynamical System and Turbulence, Lecture Notes in Mathematics (Berlin: Springer-Verlag) p366

    [24]

    Zheng G B 2009 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [郑桂波 2009 博士学位论文 (天津: 天津大学)]

    [25]

    Rossler O E 1976 Phys. Lett. A 57 397

    [26]

    You R Y, Chen Z, Xu S C, Wu B X 2004 Acta Phys. Sin. 53 2882 (in Chinese) [游荣义, 陈忠, 徐慎初, 吴伯僖 2004 物理学报 53 2882]

  • [1] He Chuan-Hui, Liu Gao-Jie, Lou Qin. Behavior of bubble with high density ratio in a microchannel with asymmetric obstacles. Acta Physica Sinica, 2021, 70(24): 244701. doi: 10.7498/aps.70.20211328
    [2] Peng Xu, Li Bin, Wang Shun-Yao, Rao Guo-Ning, Chen Wang-Hua. Gas-liquid two-phase flow of liquid film breaking process under shock wave. Acta Physica Sinica, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [3] Lou Qin,  Li Tao,  Yang Mo. Lattice Boltzmann simulations of rising bubble driven by buoyancy in a complex microchannel. Acta Physica Sinica, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [4] Zhai Lu-Sheng, Jin Ning-De. Multi-scale cross-correlation characteristics of void fraction wave propagation for gas-liquid two-phase flows in small diameter pipe. Acta Physica Sinica, 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [5] Ai Xing-Xing, Sun Ke-Hui, He Shao-Bo. Compound attractors between different chaotic systems. Acta Physica Sinica, 2014, 63(4): 040503. doi: 10.7498/aps.63.040503
    [6] Li Hong-Wei, Zhou Yun-Long, Wang Shi-Yong, Sun Bin. The sliced trispectrum fluctuation characteristics and flow pattern representation of the nitrogen-water two-phase flow of small channel. Acta Physica Sinica, 2013, 62(14): 140505. doi: 10.7498/aps.62.140505
    [7] Gao Zhong-Ke, Jin Ning-De, Yang Dan, Zhai Lu-Sheng, Du Meng. Complex networks from multivariate time series for characterizing nonlinear dynamics of two-phase flow patterns. Acta Physica Sinica, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [8] Li Hong-Wei, Zhou Yun-Long, Liu Xu, Sun Bin. Stochastic subspsace parameter identification and stability diagram of gas-liquid two-phase flow patterns. Acta Physica Sinica, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [9] Sun Bin, Wang Er-Peng, Zheng Yong-Jun. Time-frequency spectral analysis of gas-liquid two-phase flow’s fluctuations. Acta Physica Sinica, 2011, 60(1): 014701. doi: 10.7498/aps.60.014701
    [10] Bao Bo-Cheng, Kang Zhu-Sheng, Xu Jian-Ping, Hu Wen. Bifurcation and attractor of generalized square map with exponential term. Acta Physica Sinica, 2009, 58(3): 1420-1431. doi: 10.7498/aps.58.1420
    [11] Hu Guo-Si. Scheme for doubling the number of wings in hyperchaotic attractors. Acta Physica Sinica, 2009, 58(12): 8139-8145. doi: 10.7498/aps.58.8139
    [12] Zhang Ying, Lei You-Ming, Fang Tong. Symmetry breaking crisis of chaotic attractors. Acta Physica Sinica, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [13] Zheng Gui-Bo, Jin Ning-De. Multiscale entropy and dynamic characteristics of two-phase flow patterns. Acta Physica Sinica, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [14] Zong Yan-Bo, Jin Ning-De, Wang Zhen-Ya, Wang Zhen-Hua. The perimeter measure analysis of chaotic attractor morphology of inclined oil-water two phase flow patterns. Acta Physica Sinica, 2009, 58(11): 7544-7551. doi: 10.7498/aps.58.7544
    [15] Tan Si-Ting, He Yi, Sheng Li-Yuan. Study of attractor based on tangent-delay for elliptic reflecting cavity. Acta Physica Sinica, 2008, 57(10): 6103-6111. doi: 10.7498/aps.57.6103
    [16] Wang Fan-Zhen, Qi Guo-Yuan, Chen Zeng-Qiang, Yuan Zhu-Zhi. On a four-winged chaotic attractor. Acta Physica Sinica, 2007, 56(6): 3137-3144. doi: 10.7498/aps.56.3137
    [17] Jin Ning-De, Dong Fang, Zhao Shu. The complexity measure analysis of conductance fluctuation signals of gas-liquid two-phase flow and its flow pattern characterization. Acta Physica Sinica, 2007, 56(2): 720-729. doi: 10.7498/aps.56.720
    [18] Xiao Nan, Jin Ning-De. Research on flow pattern classification method of two phase flow based on chaotic attractor morphological characteristic. Acta Physica Sinica, 2007, 56(9): 5149-5157. doi: 10.7498/aps.56.5149
    [19] Hao Jian-Hong, Li Wei. Phase synchronization of R?ssler in two coupled harmonic oscillators. Acta Physica Sinica, 2005, 54(8): 3491-3496. doi: 10.7498/aps.54.3491
    [20] WANG XIAO-GANG, LIU YUE, QIU XIAO-MING. STRANGE ATTRACTOR AND CHAOTIC PHENOMENA IN NON-IDEAL MHD FLOW. Acta Physica Sinica, 1988, 37(10): 1718-1728. doi: 10.7498/aps.37.1718
Metrics
  • Abstract views:  5912
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2015
  • Accepted Date:  14 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回