Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional bright soliton in exciton-polariton condensate

Huang Yi-Fan Liang Zhao-Xin

Citation:

Two-dimensional bright soliton in exciton-polariton condensate

Huang Yi-Fan, Liang Zhao-Xin
PDF
HTML
Get Citation
  • In non-conservative nonlinear systems, the basic physical mechanics of soliton generation is that the kinetic energy and nonlinear terms of the system, as well as the gain and dissipation terms reach a double dynamic balance. How to generate stable free high-dimensional solitons in such a system is currently a challenging topic in soliton theory. In this article, we propose a theoretical scheme for realizing two-dimensional free bright solitons in exciton-polariton Bose-Einstein condensates, which proposes a physical mechanism for generating stable two-dimensional free space bright solitons through time periodic modulation interactions and a dual balance between gain and dissipation. In this end, firstly, we obtain the dynamic equations of two-dimensional bright soliton parameters through the Lagrange variational method, and obtain its dynamically stable parameter space. Secondly, the evolution of the generalized dissipative Gross-Pitaveskii equation is numerically simulated to verify the stability of two-dimensional bright solitons. Finally, we add Gaussian noise to simulate a real experimental environment and find that two-dimensional bright solitons are also stable within the observable time range of the experiment. Our experimental scheme opens the door to the study of bright solitons in high-dimensional free space in non-conservative systems.
      Corresponding author: Liang Zhao-Xin, zhxliang@zjnu.edu.cn
    • Funds: Project supported by the Key Program of the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ21A040001) and the National Natural Science Foundation of China (Grant No. 12074344)
    [1]

    Saito H, Ueda M 2003 Phys. Rev. Lett. 90 040403Google Scholar

    [2]

    Zhang Y C, Zhou Z W, Malomed B A, Pu H 2015 Phys. Rev. Lett. 115 253901Google Scholar

    [3]

    Dalfovo F, Stringari S 1996 Phys. Rev. A 53 2477Google Scholar

    [4]

    Carr L D, Clark C W 2006 Phys. Rev. Lett. 97 010403Google Scholar

    [5]

    Kartashov Y V, Malomed B A, Torner L 2011 Rev. Mod. Phys. 83 247Google Scholar

    [6]

    Maucher F, Henkel N, Saffman M, Królikowski W, Skupin S, Pohl T 2011 Phys. Rev. Lett. 106 170401Google Scholar

    [7]

    Tikhonenkov I, Malomed B A, Vardi A 2008 Phys. Rev. Lett. 100 090406Google Scholar

    [8]

    Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L 2018 Science 361 567Google Scholar

    [9]

    Smirnov L A, Smirnova D A, Ostrovskaya E A, Kivshar Y S 2014 Phys. Rev. B 89 235310Google Scholar

    [10]

    Xu X R, Chen L, Zhang Z D, Liang Z X 2019 J. Phys. B 52 025303Google Scholar

    [11]

    Jia C Y, Liang Z X 2020 Chin. Phys. Lett. 37 040502Google Scholar

    [12]

    Jia C Y, Wu R K, Hu Y, Liu W M, Liang Z X 2021 Front. Phys. 9 805841Google Scholar

    [13]

    Zhang Y L, Jia C Y, Liang Z X 2022 Chin. Phys. Lett. 39 020501Google Scholar

    [14]

    Jia C Y, Liang Z X 2022 Entropy 24 1789Google Scholar

    [15]

    余超凡, 梁国栋, 曹锡金 2008 物理学报 57 4402Google Scholar

    Yu C F, Liang G D, Cao X J 2008 Acta Phys. Sin. 57 4402Google Scholar

    [16]

    陈礼元, 高超, 林机, 李慧军 2022 物理学报 71 181101Google Scholar

    Chen L Y, Gao C, Lin J, Li H J 2022 Acta Phys. Sin. 71 181101Google Scholar

    [17]

    Kasprzak J, Richard M, Kundermann S, et al. 2006 Nature 443 409Google Scholar

    [18]

    Balili R, Hartwell V, Snoke D, Pfeiffer L, West K 2007 Science 316 1007Google Scholar

    [19]

    Deng H, Weihs G, Santori C, Bloch J, Yamamoto Y 2002 Science 298 199Google Scholar

    [20]

    Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299Google Scholar

    [21]

    Byrnes T, Kim N Y, Yamamoto Y 2014 Nat. Phys. 10 803Google Scholar

    [22]

    Plumhof J D, Stöferle T, Mai L, Scherf U, Mahrt R F 2014 Nat. Mater. 13 247Google Scholar

    [23]

    Su R, Ghosh S, Wang J, Liu S, Diederichs C, Liew T C H, Xiong Q H 2020 Nat. Phys. 16 301Google Scholar

    [24]

    李峰, 熊启华 2022 物理 51 445Google Scholar

    Li F, Xiong Q H 2022 Physics 51 445Google Scholar

    [25]

    Sieberer L M, Buchhold M, Diehl S 2016 Rep. Prog. Phys. 79 096001Google Scholar

    [26]

    Ciuti C, Schwendimann P, Quattropani A 2001 Phys. Rev. B 63 041303(RGoogle Scholar

    [27]

    Klass M, Flayac H, Amthor M, Savenko I G, Brodbeck S, Ala-Nissila T, Klembt S, Schneider C, Höfling S 2018 Phys. Rev. Lett. 120 017401Google Scholar

    [28]

    Schneider C, Winkler K, Fraser M D, Kamp M, Yamamoto Y, Ostrovskaya E A, Höfling S 2016 Rep. Prog. Phys. 80 016503Google Scholar

    [29]

    Shelykh I A, Kavokin A V, Rubo Y G, Liew T C H, Malpuech G 2010 Semicond. Sci. Technol. 25 013001Google Scholar

    [30]

    Sanvitto D, Kéna-Cohen S 2016 Nat. Mater. 15 1061Google Scholar

    [31]

    Takemura N, Trebaol S, Wouters M, Portella-Oberli M T, Deveaud B 2014 Nat. Phys. 10 500Google Scholar

    [32]

    Sun Y, Yoon Y, Steger M, Liu G, Pfeiffer L N, West K, Snoke D W, Nelson K A 2017 Nat. Phys. 13 870Google Scholar

    [33]

    Navadeh-Toupchi M, Takemura N, Anderson M D, Oberli D Y, Portella-Oberli M T 2019 Phys. Rev. Lett. 122 047402Google Scholar

    [34]

    Lai C W, Kim N Y, Utsunomiya S, et al. 2007 Nature 450 529Google Scholar

    [35]

    St-Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet T, Sagnes I, Bloch J, Amo A 2017 Nat. Photonics 11 651Google Scholar

    [36]

    Manni F, Lagoudakis K G, Pietka B, Fontanesi L, Wouters M, Savona V, André R, Deveaud-Plédran B 2011 Phys. Rev. Lett. 106 176401Google Scholar

    [37]

    Thunert M, Janot A, Franke H, Sturm C, Michalsky T, Martín T, Viña L, Rosenow B, Grundmann M, Schmidt-Grund R 2016 Phys. Rev. B 93 064203Google Scholar

    [38]

    Sala V G, Solnyshkov D D, Carusotto I, et al. 2015 Phys. Rev. X 5 011034Google Scholar

    [39]

    Whittaker C E, Cancellieri E, Walker P M, et al. 2018 Phys. Rev. Lett. 120 097401Google Scholar

    [40]

    Klembt S, Harder T H, Egorov O A, et al. 2018 Nature 562 552Google Scholar

    [41]

    Lim H T, Togan E, Kroner M, Miguel-Sanchez J, Imamoğlu A 2017 Nat. Commun. 8 14540Google Scholar

    [42]

    陈海军, 任元, 王华 2022 物理学报 71 056701Google Scholar

    Chen H J, Ren Y, Wang H 2022 Acta Phys. Sin. 71 056701Google Scholar

    [43]

    郭慧, 王雅君, 王林雪, 张晓斐 2020 物理学报 69 010302Google Scholar

    Guo H, Wang Y J, Wang L X, Zhang X F 2020 Acta Phys. Sin. 69 010302Google Scholar

    [44]

    Kivshar Y S, Królikowski W 1995 Opt. Commun. 114 353Google Scholar

    [45]

    Frantzeskakis D J 2010 J. Phys. A: Math. Theor. 43 213001Google Scholar

    [46]

    Tran P 1998 Phys. Rev. E 58 8049Google Scholar

  • 图 1  峰值密度$\left|\psi\left(r=0\right)\right|^{2}$和单极矩$\left\langle r\right\rangle = \displaystyle\int r\left|\psi\right|^{2}\mathrm{d}\boldsymbol{r}$随时间t演化的图像 (a1), (a2) $\gamma_{{\rm{C}}}=0.60$, $\gamma_{{\rm{R}}}=3.00$, $P_{0}=1.271$; (b1), (b2) $\gamma_{{\rm{C}}}=0.70$, $\gamma_{{\rm{R}}}=3.00$, $P_{0}=1.484$; (c1), (c2) $\gamma_{{\rm{C}}}=0.60$, $\gamma_{{\rm{R}}}=2.60$, $P_{0}=1.142$. 周期振荡相互作用强度取为$g(t)= $$ -2\pi+ 8\pi\sin(\varOmega t)$, 含时演化的前段$t=0$—20, 逐渐打开热源极化子间的相互作用, 同时缓慢减弱径向约束势到零. 其他参数为$R=2.40$, $\omega=2.00$, $\varOmega=30$, $g_{{\rm{R}}}=0$

    Figure 1.  Time evolution of the peak density $\left|\psi\left(r=0\right)\right|^{2}$ and the monopole moment $\left\langle r\right\rangle = \displaystyle\int r\left|\psi\right|^{2}\mathrm{d}\boldsymbol{r}$: (a1), (a2) $\gamma_{{\rm{C}}}=0.60$, $\gamma_{{\rm{R}}}=3.00$, $P_{0}=1.271$; (b1), (b2) $\gamma_{{\rm{C}}}=0.70$, $\gamma_{{\rm{R}}}=3.00$, $P_{0}=1.484$; (c1), (c2) $\gamma_{{\rm{C}}}=0.60$, $\gamma_{{\rm{R}}}=2.60$, $P_{0}=1.142$. The interaction $g(t)=-2\pi+8\pi\sin(\varOmega t)$ is switched on a little bit at a time while the radial confinement potential is switched off from $t=0$ to 20. Values of other parameters are $R=2.40$, $\omega=2.00$, $\varOmega=30$, $g_{{\rm{R}}}=0$

    图 2  图1(a)所描述系统中, 概率密度分布随时间演化的图像. 图中颜色明暗代表概率密度的大小, 颜色越亮表示对应的概率密度越大

    Figure 2.  Time evolution of the the odds density distribution for the system depicted in Fig. 1(a). The brighter and darker colors in the figure represent the magnitude of the density, and the brighter color indicates the corresponding higher density

    图 3  考虑噪声的快热库极限下, 峰值密度$\left|\psi\left(r=0\right)\right|^{2}$(a)随时间演化图像和(b)概率密度分布图像. 周期振荡相互作用强度取为$g(t)=-2\pi+8\pi\sin(\varOmega t)$, 噪音强度为$D=0.01$, 其他参数为$R=2.40$, $\gamma_{{\rm{C}}}=0.60$, $\gamma_{{\rm{R}}}=3.00$, $P_{0}=1.274$, $\omega=2.00$, $\varOmega=30$, $g_{{\rm{R}}}=0$. 图中颜色明暗代表概率密度的大小, 颜色越亮表示对应的概率密度越大

    Figure 3.  (a) Time evolution of the peak density $\left|\psi\left(r=0\right)\right|^{2}$ and (b) the density distribution in the limit of fast reservoir considering the noise. The interaction $g(t)=-2\pi+8\pi\sin(\varOmega t)$ is switched on a little bit at a time while the radial confinement potential is switched off from $t=0$ to 20. The noise intensity is $D=0.01$. Values of other parameters are $R=2.40$, $\gamma_{{\rm{C}}}=0.60$, $\gamma_{{\rm{R}}}=3.00$, $P_{0}=1.274$, $\omega=2.00$, $\varOmega=30$, $g_{{\rm{R}}}=0$. The brighter and darker colors in the figure represent the magnitude of the density, and the brighter color indicates the corresponding higher density

    图 4  根据演化耦合方程(4)和方程(5), 峰值密度$\left|\psi\left(r=0\right)\right|^{2}$和概率密度分布图像 (a1)快热库参数空间中峰值密度$\left|\psi\left(r=0\right)\right|^{2}$随时间演化的图像, $R=2.40$, $\gamma_{{\rm{R}}}=3.00$; (b1)在图(a1)基础上再加入强度为$D=0.01$的弱噪声; (c1), (d1)考虑噪声的快热库参数空间中的概率密度分布图; (a2)非快热库参数空间中峰值密度$\left|\psi\left(r=0\right)\right|^{2}$随时间演化的图像, $R=0.24$, $\gamma_{{\rm{R}}}=0.30$; (b2)在图(a2)基础上再加入强度为$D=0.01$的弱噪声; (c2), (d2)考虑噪声的非快热库参数空间中的分叉率密度分布图. 周期振荡相互作用强度取为$g(t)=-2\pi+8\pi\sin(\varOmega t)$, 在$t=30$时加入高斯白噪声, 其他参数为$\gamma_{{\rm{C}}}=0.60$, $P_{0}=1.265$, $\omega=2.20$, $\varOmega=30$, $g_{{\rm{R}}}=0$. 图中颜色明暗代表概率密度的大小, 颜色越亮表示对应的概率密度越大

    Figure 4.  Time evolution of the peak density $\left|\psi\left(r=0\right)\right|^{2}$ and the monopole moment $\left\langle r\right\rangle =\int r\left|\psi\right|^{2}\mathrm{d}\boldsymbol{r}$ while evolving the coupled equations (4) and (5): (a1) Image of peak density $\left|\psi\left(r=0\right)\right|^{2}$ in the parameter space of fast reservoir with time evolution, $R=2.40$, $\gamma_{{\rm{R}}}=3.00$; (b1) adding a weak noise with intensity D=0.01 to panel (a1); (c1), (d1) image of density distribution in the parameter space of fast reservoir considering the noise; (a2) image of peak density $\left|\psi\left(r=0\right)\right|^{2}$ in the parameter space of non-fast reservoir with time evolution, $R=0.24$, $\gamma_{{\rm{R}}}=0.30$; (b2) adding a weak noise with intensity D = 0.01 to panel (a2); (c2), (d2) image of density distribution in the parameter space of non-fast reservoir considering the noise. The interaction $g(t)=-2\pi+8\pi\sin(\varOmega t)$ is switched on a little bit at a time while the radial confinement potential is switched off from $t=0$ to 20. Gaussian white noise is added at the moment $t=30$, and the other parameters are $\gamma_{{\rm{C}}}=0.60$, $P_{0}=1.265$, $\omega=2.20$, $\varOmega=30$, $g_{{\rm{R}}}=0$. The brighter and darker colors in the figure represent the magnitude of the density, and the brighter color indicates the corresponding higher density

  • [1]

    Saito H, Ueda M 2003 Phys. Rev. Lett. 90 040403Google Scholar

    [2]

    Zhang Y C, Zhou Z W, Malomed B A, Pu H 2015 Phys. Rev. Lett. 115 253901Google Scholar

    [3]

    Dalfovo F, Stringari S 1996 Phys. Rev. A 53 2477Google Scholar

    [4]

    Carr L D, Clark C W 2006 Phys. Rev. Lett. 97 010403Google Scholar

    [5]

    Kartashov Y V, Malomed B A, Torner L 2011 Rev. Mod. Phys. 83 247Google Scholar

    [6]

    Maucher F, Henkel N, Saffman M, Królikowski W, Skupin S, Pohl T 2011 Phys. Rev. Lett. 106 170401Google Scholar

    [7]

    Tikhonenkov I, Malomed B A, Vardi A 2008 Phys. Rev. Lett. 100 090406Google Scholar

    [8]

    Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L 2018 Science 361 567Google Scholar

    [9]

    Smirnov L A, Smirnova D A, Ostrovskaya E A, Kivshar Y S 2014 Phys. Rev. B 89 235310Google Scholar

    [10]

    Xu X R, Chen L, Zhang Z D, Liang Z X 2019 J. Phys. B 52 025303Google Scholar

    [11]

    Jia C Y, Liang Z X 2020 Chin. Phys. Lett. 37 040502Google Scholar

    [12]

    Jia C Y, Wu R K, Hu Y, Liu W M, Liang Z X 2021 Front. Phys. 9 805841Google Scholar

    [13]

    Zhang Y L, Jia C Y, Liang Z X 2022 Chin. Phys. Lett. 39 020501Google Scholar

    [14]

    Jia C Y, Liang Z X 2022 Entropy 24 1789Google Scholar

    [15]

    余超凡, 梁国栋, 曹锡金 2008 物理学报 57 4402Google Scholar

    Yu C F, Liang G D, Cao X J 2008 Acta Phys. Sin. 57 4402Google Scholar

    [16]

    陈礼元, 高超, 林机, 李慧军 2022 物理学报 71 181101Google Scholar

    Chen L Y, Gao C, Lin J, Li H J 2022 Acta Phys. Sin. 71 181101Google Scholar

    [17]

    Kasprzak J, Richard M, Kundermann S, et al. 2006 Nature 443 409Google Scholar

    [18]

    Balili R, Hartwell V, Snoke D, Pfeiffer L, West K 2007 Science 316 1007Google Scholar

    [19]

    Deng H, Weihs G, Santori C, Bloch J, Yamamoto Y 2002 Science 298 199Google Scholar

    [20]

    Carusotto I, Ciuti C 2013 Rev. Mod. Phys. 85 299Google Scholar

    [21]

    Byrnes T, Kim N Y, Yamamoto Y 2014 Nat. Phys. 10 803Google Scholar

    [22]

    Plumhof J D, Stöferle T, Mai L, Scherf U, Mahrt R F 2014 Nat. Mater. 13 247Google Scholar

    [23]

    Su R, Ghosh S, Wang J, Liu S, Diederichs C, Liew T C H, Xiong Q H 2020 Nat. Phys. 16 301Google Scholar

    [24]

    李峰, 熊启华 2022 物理 51 445Google Scholar

    Li F, Xiong Q H 2022 Physics 51 445Google Scholar

    [25]

    Sieberer L M, Buchhold M, Diehl S 2016 Rep. Prog. Phys. 79 096001Google Scholar

    [26]

    Ciuti C, Schwendimann P, Quattropani A 2001 Phys. Rev. B 63 041303(RGoogle Scholar

    [27]

    Klass M, Flayac H, Amthor M, Savenko I G, Brodbeck S, Ala-Nissila T, Klembt S, Schneider C, Höfling S 2018 Phys. Rev. Lett. 120 017401Google Scholar

    [28]

    Schneider C, Winkler K, Fraser M D, Kamp M, Yamamoto Y, Ostrovskaya E A, Höfling S 2016 Rep. Prog. Phys. 80 016503Google Scholar

    [29]

    Shelykh I A, Kavokin A V, Rubo Y G, Liew T C H, Malpuech G 2010 Semicond. Sci. Technol. 25 013001Google Scholar

    [30]

    Sanvitto D, Kéna-Cohen S 2016 Nat. Mater. 15 1061Google Scholar

    [31]

    Takemura N, Trebaol S, Wouters M, Portella-Oberli M T, Deveaud B 2014 Nat. Phys. 10 500Google Scholar

    [32]

    Sun Y, Yoon Y, Steger M, Liu G, Pfeiffer L N, West K, Snoke D W, Nelson K A 2017 Nat. Phys. 13 870Google Scholar

    [33]

    Navadeh-Toupchi M, Takemura N, Anderson M D, Oberli D Y, Portella-Oberli M T 2019 Phys. Rev. Lett. 122 047402Google Scholar

    [34]

    Lai C W, Kim N Y, Utsunomiya S, et al. 2007 Nature 450 529Google Scholar

    [35]

    St-Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet T, Sagnes I, Bloch J, Amo A 2017 Nat. Photonics 11 651Google Scholar

    [36]

    Manni F, Lagoudakis K G, Pietka B, Fontanesi L, Wouters M, Savona V, André R, Deveaud-Plédran B 2011 Phys. Rev. Lett. 106 176401Google Scholar

    [37]

    Thunert M, Janot A, Franke H, Sturm C, Michalsky T, Martín T, Viña L, Rosenow B, Grundmann M, Schmidt-Grund R 2016 Phys. Rev. B 93 064203Google Scholar

    [38]

    Sala V G, Solnyshkov D D, Carusotto I, et al. 2015 Phys. Rev. X 5 011034Google Scholar

    [39]

    Whittaker C E, Cancellieri E, Walker P M, et al. 2018 Phys. Rev. Lett. 120 097401Google Scholar

    [40]

    Klembt S, Harder T H, Egorov O A, et al. 2018 Nature 562 552Google Scholar

    [41]

    Lim H T, Togan E, Kroner M, Miguel-Sanchez J, Imamoğlu A 2017 Nat. Commun. 8 14540Google Scholar

    [42]

    陈海军, 任元, 王华 2022 物理学报 71 056701Google Scholar

    Chen H J, Ren Y, Wang H 2022 Acta Phys. Sin. 71 056701Google Scholar

    [43]

    郭慧, 王雅君, 王林雪, 张晓斐 2020 物理学报 69 010302Google Scholar

    Guo H, Wang Y J, Wang L X, Zhang X F 2020 Acta Phys. Sin. 69 010302Google Scholar

    [44]

    Kivshar Y S, Królikowski W 1995 Opt. Commun. 114 353Google Scholar

    [45]

    Frantzeskakis D J 2010 J. Phys. A: Math. Theor. 43 213001Google Scholar

    [46]

    Tran P 1998 Phys. Rev. E 58 8049Google Scholar

  • [1] Yang Jia-Qi, Liu Wen-Jun. Propagation characteristics of bright and mixed solitons based on the variable coefficient (3+1)-dimensional cubic-quintic complex Ginzburg-Landau equation. Acta Physica Sinica, 2023, 72(10): 100504. doi: 10.7498/aps.72.20222430
    [2] Qiu Xu, Wang Lin-Xue, Chen Guang-Ping, Hu Ai-Yuan, Wen Lin. Dynamics of spin-tensor-momentum coupled Bose-Einstein condensates. Acta Physica Sinica, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [3] Li Xin-Yue, Qi Juan-Juan, Zhao Dun, Liu Wu-Ming. Soliton solutions of the spin-orbit coupled binary Bose-Einstein condensate system. Acta Physica Sinica, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [4] Chen Yi-Xi, Cai Xiao-Yan, Liu Bin, Jiang Xun-Da, Li Yong-Yao. Hidden vortices of quantum droplets in quasi-two dimensional space. Acta Physica Sinica, 2022, 71(20): 200302. doi: 10.7498/aps.71.20220709
    [5] Wu Hao, Ren Yuan, Liu Tong, Wang Yuan-Qin, Xing Chao-Yang. Rotational dynamics characteristics of planar superimposed vortices of exciton polariton condensates. Acta Physica Sinica, 2020, 69(23): 230303. doi: 10.7498/aps.69.20200697
    [6] Xu Xin, Jin Xue-Ying, Gao Hao-Ran, Cheng Jie, Lu Yang, Chen Dong, Yu Lian-Dong. Analysis of frequency tuning process of dual coupled optical microcavities. Acta Physica Sinica, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [7] Ren Jin-Lian, Ren Heng-Fei, Lu Wei-Gang, Jiang Tao. Simulation of two-dimensional nonlinear problem with solitary wave based on split-step finite pointset method. Acta Physica Sinica, 2019, 68(14): 140203. doi: 10.7498/aps.68.20190340
    [8] Wen Lin, Liang Yi, Zhou Jing, Yu Peng, Xia Lei, Niu Lian-Bin, Zhang Xiao-Fei. Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [9] Zhang Jie-Fang, Dai Chao-Qing. Control of nonautonomous matter rogue waves. Acta Physica Sinica, 2016, 65(5): 050501. doi: 10.7498/aps.65.050501
    [10] Dang Ting-Ting, Wang Juan-Fen, An Ya-Dong, Liu Xiang-Lian, Zhang Zhao-Xia, Yang Ling-Zhen. Transmission and control of bright solitons in parity-time symmetric waveguide. Acta Physica Sinica, 2015, 64(6): 064211. doi: 10.7498/aps.64.064211
    [11] Xu Yuan-Fen. Exact traveling wave solutions for simplified model of Gross-Pitaevskii equation in the 1D-Tonks-Girardeau gas. Acta Physica Sinica, 2013, 62(10): 100202. doi: 10.7498/aps.62.100202
    [12] He Zhang-Ming, Wang Deng-Long, Ding Jian-Wen, Yan Xiao-Hong. Oscillation-localization transition behavior of bright-bright solitons in two species Bose-Einstein condensates. Acta Physica Sinica, 2012, 61(23): 230508. doi: 10.7498/aps.61.230508
    [13] Zong Feng-De, Yang Yang, Zhang Jie-Fang. Evolution and controlled manipulation of a Bose-Einstein condensate chirped soliton in external potentials. Acta Physica Sinica, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [14] Zong Feng-De, Zhang Jie-Fang. N-soliton interactions of Bose-Einstein condensates in external potentials. Acta Physica Sinica, 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [15] He Zhang-Ming, Wang Deng-Long. Evolvement between bright and dark soliton of condensates. Acta Physica Sinica, 2007, 56(6): 3088-3091. doi: 10.7498/aps.56.3088
    [16] Xu Zhi-Jun, Shi Jian-Qing, Li Zhen, Cai Ping-Gen. Solution of the ground state wave function of Bose-condensed gas in a harmonic trap based on the Gross-Pitaevskii function. Acta Physica Sinica, 2006, 55(7): 3265-3271. doi: 10.7498/aps.55.3265
    [17] Jiang De-Sheng, She Wei-Long. Coherent collisions of multi photovoltaic bright spatial solitons. Acta Physica Sinica, 2005, 54(5): 2090-2095. doi: 10.7498/aps.54.2090
    [18] Quyang Shi-Gen, She Wei-Long. Dark-bright photovoltaic soliton pair with two-wavelength components. Acta Physica Sinica, 2004, 53(9): 3042-3048. doi: 10.7498/aps.53.3042
    [19] Jiang De-Sheng, Ouyang Shi-Gen, She Wei-Long. Interaction of photovotaic spatial solitons between dark and dark as well as dark and bright. Acta Physica Sinica, 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
    [20] Li Xiang-Zheng, Zhang Jin-Liang, Wang Yue-Ming, Wang Ming-Liang. Envelope solutions to nonlinear Schr?dinger equation. Acta Physica Sinica, 2004, 53(12): 4045-4051. doi: 10.7498/aps.53.4045
Metrics
  • Abstract views:  3311
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  21 March 2023
  • Accepted Date:  21 April 2023
  • Available Online:  21 April 2023
  • Published Online:  20 May 2023

/

返回文章
返回