Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates

Wen Lin Liang Yi Zhou Jing Yu Peng Xia Lei Niu Lian-Bin Zhang Xiao-Fei

Citation:

Effects of linear Zeeman splitting on the dynamics of bright solitons in spin-orbit coupled Bose-Einstein condensates

Wen Lin, Liang Yi, Zhou Jing, Yu Peng, Xia Lei, Niu Lian-Bin, Zhang Xiao-Fei
PDF
HTML
Get Citation
  • Solitons as self-supported solitary waves are one of the most fundamental objects in nonlinear science. With the realization of Bose-Einstein condensate, matter-wave solitons have aroused enormous interest due to their potential applications in atomic transport and atomic interferometer. In recent years, the artificial spin-orbit coupling has been realized in ultracold atoms, thus providing a new platform to study the nonlinear matter wave solitons under a gauge field, and a variety of novel soliton phenomena have been successively predicted. In this paper, we analyze the effects of linear Zeeman splitting on the dynamics of bright-bright solitons in spin-orbit coupled two-component Bose-Einstein condensate, via the variational approximation and the numerical simulation of Gross-Pitaevskii (GP) equations. For the SU(2) spin-rotational invariant attractive atomic interaction in a uniform case without external trap, we take a hyperbolic secant function as the variational Ansatz for bright soliton in variational approximation, and derive the Euler-Lagrange equations describing the evolution of the Ansatz parameters. By solving the time-independent Euler-Lagrange equations, we find two stationary solitons each with a finite momentum for a weak spin-orbit coupling due to the linear Zeeman splitting. Linearizing the Euler-Lagrange equations around these stationary solitons, we further obtain a zero-energy Goldstone mode and an oscillation mode with frequency related to linear Zeeman splitting: the former indicates that the continuous translational symmetry of the stationary solitons will be broken under a perturbation, and the later shows that the stationary solitons will oscillate under a perturbation. Furthermore, by solving the time-dependent Euler-Lagrange equations, we also obtain the exact full dynamical solutions of Ansatz parameters, and observe that the linear Zeeman splitting affects the period and velocity of soliton's oscillation and linear motion, which may provide a new method to control the dynamics of solitons. All the variational calculations are also confirmed directly by the numerical simulation of GP equations.
      Corresponding author: Zhang Xiao-Fei, xfzhang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875010, 11504037, 11775253, 11504038, 61874016, 11504035), and the Foundation of Education Committees of Chongqing (Grant Nos. KJ1500411, KJ1600307), the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2015jcyjA00013), the Foundation for the Creative Research Groups of Higher Education of Chongqing (Grant No. CXTDX201601016), and the Chongqing Science and Technology Innovation Leading Talents Support Plan(Grant No. cstc2018kjcxljrc0050).
    [1]

    Malomed B A 2006 Soliton Management in Periodic Systems (Vol. 1) (Berlin: Springer) p1

    [2]

    Kevrekidis P G, Frantzeskakis D J, Carretero-Gonzalez R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates (Vol. 1)(Berlin: Springer) pp43−96

    [3]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [4]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

    [5]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [6]

    Cornish S L, Thompson S T, Wieman C E 2006 Phys. Rev. Lett. 96 170401Google Scholar

    [7]

    Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S, Cornish S L 2013 Nat. Commun. 4 1865Google Scholar

    [8]

    Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918Google Scholar

    [9]

    Yefsah T, Sommer A T, Ku M J H, Cheuk L W, Ji W, Bakr W S, Zwierlein M W 2013 Nature 499 426Google Scholar

    [10]

    Ku M J H, Ji W, Mukherjee B, Guardado-Sanchez E, Cheuk L W, Yefsah T, Zwierlein M W 2014 Phys. Rev. Lett. 113 065301Google Scholar

    [11]

    张蔚曦, 张志强, 冉茂武, 欧永康, 何章明 2014 物理学报 63 200507Google Scholar

    Zhang W X, Zhang Z Q, Ran M W, Ou Y K, He Z M 2014 Acta Phys. Sin. 63 200507Google Scholar

    [12]

    Guo X H, Xu T F, Liu C S 2018 Chin. Rhys. B 27 060307

    [13]

    Wang Q, Wen L, Li Z D 2012 Chin. Phys. B 21 080501Google Scholar

    [14]

    Lin Y J, Jiménez-GarcÍa K, Spielman I B 2011 Nature 471 83Google Scholar

    [15]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [16]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [17]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [18]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [19]

    Zhou X, Li Y, Cai Z, Wu C J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134001Google Scholar

    [20]

    Xu Y, Zhang Y, Wu B 2013 Phys. Rev. A 87 013614Google Scholar

    [21]

    Achilleos V, Frantzeskakis D J, Kevrekidis P G, Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101Google Scholar

    [22]

    Achilleos V, Stockhofe J, Kevrekidis P G, Frantzeskakis D J, Schmelcher P 2013 Europhys. Lett. 103 20002Google Scholar

    [23]

    Kartashov Y V, Konotop V V, Abdullaev F K 2013 Phys. Rev. Lett. 111 060402Google Scholar

    [24]

    Liu Y K, Yang S J 2014 Europhys. Lett. 108 30004Google Scholar

    [25]

    Kartashov Y V, Konotop V V, Zezyulin D A 2014 Phys. Rev. A 90 063621Google Scholar

    [26]

    Gautam S, Adhikari S K 2015 Laser Phys. Lett. 12 045501Google Scholar

    [27]

    Gautam S, Adhikari S K 2015 Phys. Rev. A 91 063617Google Scholar

    [28]

    Zhang Y, Xu Y, Busch T 2015 Phys. Rev. A 91 043629Google Scholar

    [29]

    Peotta S, Mireles F, Di Ventra M 2015 Phys. Rev. A 91 021601Google Scholar

    [30]

    Sakaguchi H, Li B, Malomed B A 2014 Phys. Rev. E 89 032920Google Scholar

    [31]

    Sakaguchi H, Sherman E Y, Malomed B A 2016 Phys. Rev. E 94 032202Google Scholar

    [32]

    Salasnich L, Cardoso W B, Malomed B A 2014 Phys. Rev. A 90 033629Google Scholar

    [33]

    Sakaguchi H, Malomed B A 2014 Phys. Rev. E 90 062922Google Scholar

    [34]

    Lobanov V E, Kartashov Y V, Konotop V V 2014 Phys. Rev. Lett. 112 180403Google Scholar

    [35]

    Zhang Y C, Zhou Z W, Malomed B A, Pu H 2015 Phys. Rev. Lett. 115 253902Google Scholar

    [36]

    Beličev P P, Gligorić G, Petrovic J, Maluckov A, Hadžievski L, Malomed B A 2015 J. Phys. B 48 065301Google Scholar

    [37]

    Li Y, Liu Y, Fan Z, Pang W, Fu S, Malomed B A 2017 Phys. Rev. A 95 063613Google Scholar

    [38]

    Liao B, Li S, Huang C, Luo Z, Pang W, Tan H, Malomed B A, Li Y 2017 Phys. Rev. A 96 043613Google Scholar

    [39]

    Sakaguchi H, Malomed B A 2018 Phys. Rev. A 97 013607Google Scholar

    [40]

    Zhong R, Chen Z, Huang C, Luo Z, Tan H, Malomed B A, Li Y 2018 Front. Phys. 13 130311Google Scholar

    [41]

    Xu Y, Mao L, Wu B, Zhang C 2014 Phys. Rev. Lett. 113 130404Google Scholar

    [42]

    Li Y E, Xue J K 2016 Chin. Phys. Lett. 33 100502Google Scholar

    [43]

    Wen L, Sun Q, Chen Y, Wang D S, Hu J, Chen H, Liu W M, Juzeliūnas G, Malomed B A, Ji A C 2016 Phys. Rev. A 94 061602Google Scholar

    [44]

    Wen L, Zhang X F, Hu A Y, Zhou J, Yu P, Xia L, Sun Q, Ji A C 2018 Anns. Phys. 390 181

    [45]

    Sakaguchi H, Malomed B A 2017 Phys. Rev. A 96 043620Google Scholar

    [46]

    Kartashov Y V, Konotop V V 2017 Phys. Rev. Lett. 118 190401Google Scholar

    [47]

    Wen L, Sun Q, Wang H Q, Ji A C, Liu W M 2012 Phys. Rev. A 86 043602Google Scholar

    [48]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [49]

    Gong M, Chen G, Jia S T, Zhang C 2012 Phys. Rev. Lett. 109 105302Google Scholar

    [50]

    Qu C L, Zheng Z, Gong M, Xu Y, Mao L, Zou X, Guo G, Zhang C 2013 Nat. Commun. 4 2710Google Scholar

    [51]

    Zhang W, Yi W 2013 Nat. Commun. 4 2711Google Scholar

    [52]

    Zhao D, Song S W, Wen L, Li Z D, Luo H G, Liu W M 2015 Phys. Rev. A 91 013619Google Scholar

    [53]

    宗丰德, 杨阳, 张解放 2009 物理学报 58 3670Google Scholar

    Zong F D, Yang Y, Zhang J F 2009 Acta Phys. Sin. 58 3670Google Scholar

    [54]

    Alotaibi M O D, Carr L D 2017 Phys. Rev. A 96 013601Google Scholar

  • 图 1  (a),(b)$ \varOmega/k_{\rm R}^2 = 0.5 $时固定点解$ \tilde{\theta} $$ \tilde{k} $随线性塞曼劈裂$ \varepsilon $的变化; (c),(d)$ \varOmega/k_{\rm R}^2 = 1.5 $时固定点解$ \tilde{\theta} $$ \tilde{k} $随线性塞曼劈裂$ \varepsilon $的变化; (e)$ \varOmega/k_{\rm R}^2<1 $时临界值$ \varepsilon_{\rm c}$$ \varOmega $的变化

    Figure 1.  (a) and (b) show the $ \tilde{\theta} $ and $ \tilde{k} $ change with $ \varepsilon $ for $ \varOmega/k_{\rm R}^2 = 0.5 $; (c) and (d) display $ \tilde{\theta} $ and $ \tilde{k} $ change with $ \varepsilon $ for $ \varOmega/k_{\rm R}^2 = 1.5 $; (e) shows the critical value $ \varepsilon_{\rm c} $ versus $ \varOmega $ for $ \varOmega/k_{{\rm R}}^2<1 $.

    图 2  (a)和(b)分别展示$ k_{\rm R} = 0.2\varOmega $$ k_{\rm R} = 1.5\varOmega $时, 变分静态孤子解(圆圈)与GP方程(2)静态孤子的数值解(实线)的对比, 其他参数取值为$ \varepsilon = 0.3 $, $ \varOmega = 0.5 $$ g = -10 $; (c)—(f)分别为(a)和(b)中的变分静态孤子解作为初始条件在含时GP方程中的动力学演化

    Figure 2.  (a), (b) show the comparisons between the variationally predicted stationary soliton solutions (circles) and the numerical solutions (solid lines) of stationary solitons of GP equation (2) for $k_{\rm R}=0.2\varOmega$ and $k_{\rm R}=1.5\varOmega$ with $\varOmega=0.5$, respectively. The other parameters are $\varepsilon=0.3$ and $g=-10$;(c)−(f) are the dynamical evolutions of solitons in time-dependent GP simulations by using the variationally predicted stationary soliton solutions in (a) and (b) as initial wave functions, respectively

    图 3  $ \varOmega/k_{\rm R}^2 = 0.5$ (a)和$ \varOmega/k_{\rm R}^2 = 1.5 $(b)时, 频率$ \omega_{\pm} = \pm 2\varOmega/\sin\left(2\tilde{\theta}\right) $随线性塞曼劈裂强度$ \varepsilon $的变化

    Figure 3.  The frequency $\omega_{\pm}=\pm 2\varOmega/\sin\left(2\tilde{\theta}\right)$ changes with $\varepsilon$ for $\varOmega/k_{\rm R}^2=0.5$ and $\varOmega/k_{\rm R}^2=1.5$ in (a) and (b), respectively.

    图 4  (a)—(f)初始值为$ \theta_{0} = \dfrac{{\text{π}}}{4} $, $ \varphi_{-, 0} = 0 $$ k = 0 $的孤子动力学演化 (a)—(c) $ \varepsilon = 0 $, (d)—(f) $ \varepsilon = 0.35 $; 孤子振荡周期$ T(g) $及速度$ v(h) $随线性塞曼劈裂的变化

    Figure 4.  (a)−(f) show the dynamical evolutions of initially balanced solitons with $\theta_0=\dfrac{{\text{π}}}{4}$, $k=0$ and $\varphi_{-, 0}=0$ in GP simulations, $\varepsilon=0$ in (a)−(c), and $\varepsilon=0.35$ in (d)−(f); oscillation period $T(g) $ and moving velocity $v(h) $ of solitons change with the linear Zeeman splitting.

  • [1]

    Malomed B A 2006 Soliton Management in Periodic Systems (Vol. 1) (Berlin: Springer) p1

    [2]

    Kevrekidis P G, Frantzeskakis D J, Carretero-Gonzalez R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates (Vol. 1)(Berlin: Springer) pp43−96

    [3]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V, Lewenstein M 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [4]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C 2002 Science 296 1290Google Scholar

    [5]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [6]

    Cornish S L, Thompson S T, Wieman C E 2006 Phys. Rev. Lett. 96 170401Google Scholar

    [7]

    Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S, Cornish S L 2013 Nat. Commun. 4 1865Google Scholar

    [8]

    Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918Google Scholar

    [9]

    Yefsah T, Sommer A T, Ku M J H, Cheuk L W, Ji W, Bakr W S, Zwierlein M W 2013 Nature 499 426Google Scholar

    [10]

    Ku M J H, Ji W, Mukherjee B, Guardado-Sanchez E, Cheuk L W, Yefsah T, Zwierlein M W 2014 Phys. Rev. Lett. 113 065301Google Scholar

    [11]

    张蔚曦, 张志强, 冉茂武, 欧永康, 何章明 2014 物理学报 63 200507Google Scholar

    Zhang W X, Zhang Z Q, Ran M W, Ou Y K, He Z M 2014 Acta Phys. Sin. 63 200507Google Scholar

    [12]

    Guo X H, Xu T F, Liu C S 2018 Chin. Rhys. B 27 060307

    [13]

    Wang Q, Wen L, Li Z D 2012 Chin. Phys. B 21 080501Google Scholar

    [14]

    Lin Y J, Jiménez-GarcÍa K, Spielman I B 2011 Nature 471 83Google Scholar

    [15]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [16]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [17]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [18]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [19]

    Zhou X, Li Y, Cai Z, Wu C J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134001Google Scholar

    [20]

    Xu Y, Zhang Y, Wu B 2013 Phys. Rev. A 87 013614Google Scholar

    [21]

    Achilleos V, Frantzeskakis D J, Kevrekidis P G, Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101Google Scholar

    [22]

    Achilleos V, Stockhofe J, Kevrekidis P G, Frantzeskakis D J, Schmelcher P 2013 Europhys. Lett. 103 20002Google Scholar

    [23]

    Kartashov Y V, Konotop V V, Abdullaev F K 2013 Phys. Rev. Lett. 111 060402Google Scholar

    [24]

    Liu Y K, Yang S J 2014 Europhys. Lett. 108 30004Google Scholar

    [25]

    Kartashov Y V, Konotop V V, Zezyulin D A 2014 Phys. Rev. A 90 063621Google Scholar

    [26]

    Gautam S, Adhikari S K 2015 Laser Phys. Lett. 12 045501Google Scholar

    [27]

    Gautam S, Adhikari S K 2015 Phys. Rev. A 91 063617Google Scholar

    [28]

    Zhang Y, Xu Y, Busch T 2015 Phys. Rev. A 91 043629Google Scholar

    [29]

    Peotta S, Mireles F, Di Ventra M 2015 Phys. Rev. A 91 021601Google Scholar

    [30]

    Sakaguchi H, Li B, Malomed B A 2014 Phys. Rev. E 89 032920Google Scholar

    [31]

    Sakaguchi H, Sherman E Y, Malomed B A 2016 Phys. Rev. E 94 032202Google Scholar

    [32]

    Salasnich L, Cardoso W B, Malomed B A 2014 Phys. Rev. A 90 033629Google Scholar

    [33]

    Sakaguchi H, Malomed B A 2014 Phys. Rev. E 90 062922Google Scholar

    [34]

    Lobanov V E, Kartashov Y V, Konotop V V 2014 Phys. Rev. Lett. 112 180403Google Scholar

    [35]

    Zhang Y C, Zhou Z W, Malomed B A, Pu H 2015 Phys. Rev. Lett. 115 253902Google Scholar

    [36]

    Beličev P P, Gligorić G, Petrovic J, Maluckov A, Hadžievski L, Malomed B A 2015 J. Phys. B 48 065301Google Scholar

    [37]

    Li Y, Liu Y, Fan Z, Pang W, Fu S, Malomed B A 2017 Phys. Rev. A 95 063613Google Scholar

    [38]

    Liao B, Li S, Huang C, Luo Z, Pang W, Tan H, Malomed B A, Li Y 2017 Phys. Rev. A 96 043613Google Scholar

    [39]

    Sakaguchi H, Malomed B A 2018 Phys. Rev. A 97 013607Google Scholar

    [40]

    Zhong R, Chen Z, Huang C, Luo Z, Tan H, Malomed B A, Li Y 2018 Front. Phys. 13 130311Google Scholar

    [41]

    Xu Y, Mao L, Wu B, Zhang C 2014 Phys. Rev. Lett. 113 130404Google Scholar

    [42]

    Li Y E, Xue J K 2016 Chin. Phys. Lett. 33 100502Google Scholar

    [43]

    Wen L, Sun Q, Chen Y, Wang D S, Hu J, Chen H, Liu W M, Juzeliūnas G, Malomed B A, Ji A C 2016 Phys. Rev. A 94 061602Google Scholar

    [44]

    Wen L, Zhang X F, Hu A Y, Zhou J, Yu P, Xia L, Sun Q, Ji A C 2018 Anns. Phys. 390 181

    [45]

    Sakaguchi H, Malomed B A 2017 Phys. Rev. A 96 043620Google Scholar

    [46]

    Kartashov Y V, Konotop V V 2017 Phys. Rev. Lett. 118 190401Google Scholar

    [47]

    Wen L, Sun Q, Wang H Q, Ji A C, Liu W M 2012 Phys. Rev. A 86 043602Google Scholar

    [48]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [49]

    Gong M, Chen G, Jia S T, Zhang C 2012 Phys. Rev. Lett. 109 105302Google Scholar

    [50]

    Qu C L, Zheng Z, Gong M, Xu Y, Mao L, Zou X, Guo G, Zhang C 2013 Nat. Commun. 4 2710Google Scholar

    [51]

    Zhang W, Yi W 2013 Nat. Commun. 4 2711Google Scholar

    [52]

    Zhao D, Song S W, Wen L, Li Z D, Luo H G, Liu W M 2015 Phys. Rev. A 91 013619Google Scholar

    [53]

    宗丰德, 杨阳, 张解放 2009 物理学报 58 3670Google Scholar

    Zong F D, Yang Y, Zhang J F 2009 Acta Phys. Sin. 58 3670Google Scholar

    [54]

    Alotaibi M O D, Carr L D 2017 Phys. Rev. A 96 013601Google Scholar

  • [1] Wang Huan, He Xia-Yao, Li Shuai, Liu Bo. Quench dynamics of a spin-orbital coupled Bose-Einstein condensate with nonlinear interactions. Acta Physica Sinica, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [2] Yuan Jia-Wang, Chen Li, Zhang Yun-Bo. Adiabatic elimination theory of multi-level system in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [3] Qiu Xu, Wang Lin-Xue, Chen Guang-Ping, Hu Ai-Yuan, Wen Lin. Dynamics of spin-tensor-momentum coupled Bose-Einstein condensates. Acta Physica Sinica, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [4] Li Xin-Yue, Qi Juan-Juan, Zhao Dun, Liu Wu-Ming. Soliton solutions of the spin-orbit coupled binary Bose-Einstein condensate system. Acta Physica Sinica, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [5] Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui. Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [6] Jia Rui-Yu, Fang Ping-Ping, Gao Chao, Lin Ji. Quenched solitons and shock waves in Bose-Einstein condensates. Acta Physica Sinica, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [7] Tang Na, Yang Xue-Ying, Song Lin, Zhang Juan, Li Xiao-Lin, Zhou Zhi-Kun, Shi Yu-Ren. Gap solitons and their stabilities in a quasi one-dimensional Bose-Einstein condensate under three-body interaction. Acta Physica Sinica, 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [8] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [9] Guo Hui, Wang Ya-Jun, Wang Lin-Xue, Zhang Xiao-Fei. Dynamics of ring dark solitons in Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [10] Li Ji, Liu Wu-Ming. Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field. Acta Physica Sinica, 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [11] He Li, Yu Zeng-Qiang. Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition. Acta Physica Sinica, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [12] He Zhang-Ming, Zhang Zhi-Qiang. Controlling interactions between bright solitons in Bose-Einstein condensate. Acta Physica Sinica, 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [13] Li Zhi, Cao Hui. Klein tunneling in spin-orbit coupled Bose-Einstein condensate scattered by cusp barrier. Acta Physica Sinica, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [14] Zhang Heng, Duan Wen-Shan. The modulational instability of the solition wave in two-dimensional Bose-Einstein condensates. Acta Physica Sinica, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [15] Li Zhi, Wang Jian-Zhong. Barrier scattering properties in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [16] Yan Dong, Song Li-Jun, Chen Dian-Wei. Spin squeezing of two-component Bose-Einstein condensate. Acta Physica Sinica, 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [17] Zong Feng-De, Yang Yang, Zhang Jie-Fang. Evolution and controlled manipulation of a Bose-Einstein condensate chirped soliton in external potentials. Acta Physica Sinica, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [18] Wang Guan-Fang, Liu Hong. Irregular spin tunneling for Bose-Einstein condensates in a sweeping magnetic field. Acta Physica Sinica, 2008, 57(2): 667-673. doi: 10.7498/aps.57.667
    [19] Zong Feng-De, Zhang Jie-Fang. N-soliton interactions of Bose-Einstein condensates in external potentials. Acta Physica Sinica, 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [20] He Zhang-Ming, Wang Deng-Long. Evolvement between bright and dark soliton of condensates. Acta Physica Sinica, 2007, 56(6): 3088-3091. doi: 10.7498/aps.56.3088
Metrics
  • Abstract views:  8415
  • PDF Downloads:  129
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2018
  • Accepted Date:  17 February 2019
  • Available Online:  23 March 2019
  • Published Online:  20 April 2019

/

返回文章
返回