-
In this paper, the phenomenon of double barrier scattering in spin-orbit coupling Bose-Einstein condensate is studied and the analytical expression of transmission coefficient of the system is therefore obtained. On the basis of the above study, how to deal with Klein tunneling and bound Dirac particles is also discussed to devise an experimental scheme of trapping Dirac particles in captivity. Besides, numerical simulation of the barrier scattering pattern of Dirac particles is performed in this paper by the time splitting spectral method. Through the analysis of transmission situation of Dirac particles directing at the Klein barrier in both the center and margin part of blocked area and the study of the influence of non-linear interaction on the evolution of Dirac particles from both repelling and attracting effect, the conclusion can be drawn that although the influence of non-linear interaction on scattering property of particles is negligible to some extent, the strong non-linear interaction will completely destroy the momentum distribution of wave packets so that the result of barrier scattering of Dirac particles can be dramatically changed.
-
Keywords:
- spin-orbit coupled /
- Klein tunneling /
- barrier scattering /
- Bose-Einstein condensate
[1] Dombey N, Calogeracos A 1999 Phys. Rep. 315 41
[2] Lin Y J, Jimenez-Garcia K, Spielman I B 2010 Nature 471 83
[3] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910
[4] Koning M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
[5] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
[6] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
[7] Hsieh D, Qian D, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970
[8] Ruseckas J, Juzeliunas G, Ohberg P, Fleischhauer M 2005 Phys. Rev. Lett. 95 010404
[9] Osterloh K, Baig M, Santos L, Zoller P, Lewenstein M 2005 Phys. Rev. Lett. 95 010403
[10] Satija I I, Dakin D C, Clark C W 2006 Phys. Rev. Lett. 97 216401
[11] Zhu S L, Fu H, Wu C J, Zhang S C, Duan L M 2006 Phys. Rev. Lett. 97 240401
[12] Liu X J, Liu X, Kwek C C 2007 Phys. Rev. Lett. 98 026602
[13] Stanescu T D, Zhang C, Galitski V 2007 Phys. Rev. Lett. 99 110403
[14] Juzeliunas G, Ruseckas J, Dalibard J 2010 Phys. Rev. A 81 053403
[15] Zhang D W, Xue Z Y, Yan H, Wang Z D, Zhu S L 2012 Phys. Rev. A 85 013628
[16] Li Z, Wang J Z, Fu L B 2013 Chin. Phys. Lett. 30 010301
[17] Cheng Y S, Adhikari S K 2010 Phys. Rev. A 81 023620
-
[1] Dombey N, Calogeracos A 1999 Phys. Rep. 315 41
[2] Lin Y J, Jimenez-Garcia K, Spielman I B 2010 Nature 471 83
[3] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910
[4] Koning M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
[5] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
[6] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
[7] Hsieh D, Qian D, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970
[8] Ruseckas J, Juzeliunas G, Ohberg P, Fleischhauer M 2005 Phys. Rev. Lett. 95 010404
[9] Osterloh K, Baig M, Santos L, Zoller P, Lewenstein M 2005 Phys. Rev. Lett. 95 010403
[10] Satija I I, Dakin D C, Clark C W 2006 Phys. Rev. Lett. 97 216401
[11] Zhu S L, Fu H, Wu C J, Zhang S C, Duan L M 2006 Phys. Rev. Lett. 97 240401
[12] Liu X J, Liu X, Kwek C C 2007 Phys. Rev. Lett. 98 026602
[13] Stanescu T D, Zhang C, Galitski V 2007 Phys. Rev. Lett. 99 110403
[14] Juzeliunas G, Ruseckas J, Dalibard J 2010 Phys. Rev. A 81 053403
[15] Zhang D W, Xue Z Y, Yan H, Wang Z D, Zhu S L 2012 Phys. Rev. A 85 013628
[16] Li Z, Wang J Z, Fu L B 2013 Chin. Phys. Lett. 30 010301
[17] Cheng Y S, Adhikari S K 2010 Phys. Rev. A 81 023620
Catalog
Metrics
- Abstract views: 7036
- PDF Downloads: 594
- Cited By: 0