Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of coma and spherical aberration on transmission characteristics of vortex beams in slant atmospheric turbulence

Yong Kang-Le Yan Jia-Wei Tang Shan-Fa Zhang Rong-Zhu

Citation:

Influence of coma and spherical aberration on transmission characteristics of vortex beams in slant atmospheric turbulence

Yong Kang-Le, Yan Jia-Wei, Tang Shan-Fa, Zhang Rong-Zhu
PDF
HTML
Get Citation
  • Vortex beam has potential applications in free space optical communication because of its capacity of data transmission. Therefore, it is necessary to study the propagation characteristics of vortex beams in atmospheric turbulence. When the vortex beam propagates in the atmospheric turbulence the beam drift will occur, which has a great influence on the free space optical communication. In this paper, the beam drift of vortex beams with coma and spherical aberration transmitted in atmospheric turbulence is studied by using multi-phase screen and Fourier transform method. The numerical results show that as the transmission distance increases, the effects of both coma and spherical aberration on the beam drift are enhanced. The larger the transmission zenith angle and the coma coefficients, the greater the beam drift of the vortex beam is. However, the beam drift decreases with spherical aberration coefficient increasing. When the zenith angle and the transmission distance are both unchanged, the beam drift of the both vortex beams decrease with topological charges increasing. The influence of coma aberration on beam drift is bigger than that of spherical aberration.
      Corresponding author: Zhang Rong-Zhu, zhang_rz@scu.edu.cn
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 2012017yjsy160)
    [1]

    Qiu S, Liu T, Li Z M, Wang C, Ren Y, Shao Q L, et al 2019 Appl. Opt 58 2650Google Scholar

    [2]

    郑晓桐, 郭立新, 程明建, 李江挺 2018 物理学报 67 214206Google Scholar

    Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206Google Scholar

    [3]

    Paterson C 2005 Phys. Rev. Lett. 94 153901Google Scholar

    [4]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Ren Y X, et al 2012 Nat. Photonics 6 488Google Scholar

    [5]

    Juhasz T, Loesel F H, Kurtz R M, Horvath C, Bille J F, Mourou G 1999 IEEE J. Sel. Top. Quantum Electron. 5 902Google Scholar

    [6]

    Qian Y X, Shi Y L, Jin W M, Hu F R, Ren Z J 2019 Opt. Express 27 18085Google Scholar

    [7]

    Allen L, Beijersbergen M W, Spreeuw J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [8]

    He H, Friese M E, Heckenberg N R, Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826Google Scholar

    [9]

    Auguita J A, Neifeld M A, Vasic B V 2008 Appl. Opt. 47 2414Google Scholar

    [10]

    Wu J Z, Li H, Li Y J 2007 Opt. Eng. 46 019701Google Scholar

    [11]

    葛筱璐, 王本义, 国承山 2016 光学学报 36 0301002

    Ge X L, Wang B Y, Guo C S 2016 Acta Opt. Sin. 36 0301002

    [12]

    Ge X L, Wang B Y, Guo C S 2015 J. Opt. Soc. Am. A 32 837

    [13]

    Li J, Chen X, Duffie S M, Najjar M A, Rafsanjani H, Korotkova O 2019 Opt. Commun. 446 178Google Scholar

    [14]

    Sandalidis H G 2011 Appl. Opt. 50 952Google Scholar

    [15]

    柯熙政, 邓莉君 2016 无线光通信中的部分相干光传输理论 (北京:科学出版社) 第14页

    Ke X Z, Deng L J 2016 The Theory of Partially Coherent Optical Transmission in Wireless Optical Communication (Beijing: Science Press) p14 (in Chinese)

    [16]

    Aksenov V P, Pogutsa C E 2012 Appl. Opt 51 7262Google Scholar

    [17]

    Huang Y, Yuan Y S, Liu X L, Zeng J, Wang F, Yu J Y, et al 2018 Appl. Sci 8 2476Google Scholar

    [18]

    Wu G H, Dai W, Tang H, Guo H 2015 Opt. Commun. 336 55Google Scholar

    [19]

    Xu Y G, Tian H H, Dan Y Q, Feng H, Wang S J 2017 J. Mod. Opt. 64 844Google Scholar

    [20]

    狄颢萍, 张淇博, 周木春, 辛煜, 赵琦 2018 中国激光 45 0305001

    Di H P, Zhang Q B, Zhou M C, Xin Y, Zhao Q 2018 Chin. J. Laser 45 0305001

    [21]

    程振, 楚兴春, 赵尚弘, 邓博于, 张曦文 2015 中国激光 42 1213002

    Cheng Z, Chu X C, Zhao S H, Deng B Y, Zhang X W 2015 Chin. J. Laser 42 1213002

    [22]

    Dabby F W, Whinnery J R 1968 Appl. Phys. Lett. 13 284Google Scholar

    [23]

    Born M, Wolf E 1997 Principles of Optics (6th ed.) (Cambridge: Cambridge University Press)

    [24]

    Pu J X, Zhang H H 1998 Opt. Commun. 151 331Google Scholar

    [25]

    Chu X X, Zhou G Q 2007 Opt. Express 15 7697Google Scholar

    [26]

    钱仙妹, 朱文越, 饶瑞中 2009 物理学报 58 6633Google Scholar

    Qian X M, Zhu W Y, Rao R Z 2009 Acta. Phys. Sin. 58 6633Google Scholar

    [27]

    Fleck J A, Morris J R, Feit M D 1976 Appl. Phys. 10 129

    [28]

    Ke X Z, Lei S C 2016 Appl. Opt. 55 3897Google Scholar

    [29]

    李大海, 曹益平, 张启灿, 王琼华 2013 现代工程光学 (北京: 科学出版社) 第217页

    Li D H, Cao Y P, Zhang Q C, Wang Q H 2013 XianDai GongCheng GuangXue (Beijing: Science Press) p217 (in Chinese)

    [30]

    陈鸣, 高太长, 刘磊, 胡帅, 曾庆伟, 李刚, 等 2017 强激光与粒子束 29 091008

    Chen M, Gao T C, Liu L, Hu S, Zeng Q W, Li G, et al 2017 High Power Laser and Particle Beams 29 091008

  • 图 1  激光在大气湍流中斜程传输时的示意图

    Figure 1.  schematic diagram of laser propagation in slant atmospheric turbulence.

    图 2  含彗差涡旋光束在大气湍流中不同传输距离时的光强分布. (a1)−(a3) $n = 1$; (b1)−(b3) $n = 2$

    Figure 2.  Two-dimensional intensity distribution of Gaussian vortex beam with coma in slant atmospheric turbulence at different propagation distance: (a1)−(a3) $n = 1$; (b1)−(b3) $n = 2$

    图 3  拓扑荷数 (a) $n = 1$和(b) $n = 2$时带有彗差的涡旋光束在大气湍流中不同传输距离的归一化光强分布

    Figure 3.  Normalized intensity distribution of Gaussian vortex beam with coma when the propagation distance is different. Topological charge (a) $n = 1$, (b) $n = 2$.

    图 4  拓扑荷数不同时, 无像差、带有彗差和带有球差的涡旋光束在大气湍流中传输时相位变化. 传输距离z = 3639 m (a1)−(a3)无像差; (b1)−(b3)带有彗差kC3 = 0.5; (c1)−(c3)带有球差kC4 = 0.5. 相位对应黑色(–π)-白色(${\text{π}}$)

    Figure 4.  The phase change of the vortex beam with no aberration, with coma and with spherical aberration propagated in atmospheric turbulence when the topological charges are different. Distance z = 3639 m: (a1)−(a3) with no aberration; (b1)−(b3) with coma kC3 = 0.5; (c1)−(c3) with spherical aberration kC4 = 0.5. Phase responding to black (–π)-white (π).

    图 5  拓扑荷数 (a) $n = 1$和(b) $n = 2$时不同彗差系数对涡旋光束光强分布的影响

    Figure 5.  The effects of coma aberration coefficients on the intensity distribution of Gaussian vortex beam. Topological charge (a) $n = 1$, (b) $n = 2$.

    图 6  拓扑荷数 (a) $n = 1$和(b) $n = 2$时球差系数对涡旋光束光强分布的影响

    Figure 6.  The effects of spherical aberration coefficients on the intensity distribution of Gaussian vortex beam. Topological charge (a) $n = 1$, (b) $n = 2$

    图 7  分别带有不同彗差和球差系数的涡旋光束在湍流中传输时相位分布. 传输距离z = 3639 m, 拓扑核数n = 1 (a1)−(a3)带有彗差; (b1)−(b3)带有球差. 相位对应黑色(–π)-白色π)

    Figure 7.  Phase change of vortex beams with different coma and spherical aberration propagated through atmospheric turbulence. Distance z = 3639 m, topological charge n = 1: (a1)−(a3) with coma; (b1)−(b3) with spherical aberration. Phase responding to black (–π)-white (π).

    图 8  彗差系数(a)以及拓扑荷数(b)对涡旋光束的光束漂移影响

    Figure 8.  The effects of coma coefficients (a) and topological charges (b) on the beam drift.

    图 9  光束漂移量随着传输距离、天顶角和拓扑荷数的变化曲线. 实线: 拓扑荷数 $n = 1$, 虚线: 拓扑荷数$n = 2$

    Figure 9.  Curves of beam drift with different transmission distance, zenith angles and topological charges. The solid line: $n = 1$, the dash line: $n = 2$.

    图 10  天顶角、拓扑荷数(a)以及球差系数(b)对光束漂移的影响

    Figure 10.  The effects of zenith angles, topological charges (a) and spherical aberration coefficients (b) on beam drift of vortex beam.

    图 11  分别带有彗差和球差的涡旋光束在不同传输距离不同天顶角时的光束漂移量对比

    Figure 11.  Comparison of beam drift of Gaussian vortex beams with coma and spherical aberration at different zenith angles and different transmission distances.

  • [1]

    Qiu S, Liu T, Li Z M, Wang C, Ren Y, Shao Q L, et al 2019 Appl. Opt 58 2650Google Scholar

    [2]

    郑晓桐, 郭立新, 程明建, 李江挺 2018 物理学报 67 214206Google Scholar

    Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206Google Scholar

    [3]

    Paterson C 2005 Phys. Rev. Lett. 94 153901Google Scholar

    [4]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Ren Y X, et al 2012 Nat. Photonics 6 488Google Scholar

    [5]

    Juhasz T, Loesel F H, Kurtz R M, Horvath C, Bille J F, Mourou G 1999 IEEE J. Sel. Top. Quantum Electron. 5 902Google Scholar

    [6]

    Qian Y X, Shi Y L, Jin W M, Hu F R, Ren Z J 2019 Opt. Express 27 18085Google Scholar

    [7]

    Allen L, Beijersbergen M W, Spreeuw J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [8]

    He H, Friese M E, Heckenberg N R, Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826Google Scholar

    [9]

    Auguita J A, Neifeld M A, Vasic B V 2008 Appl. Opt. 47 2414Google Scholar

    [10]

    Wu J Z, Li H, Li Y J 2007 Opt. Eng. 46 019701Google Scholar

    [11]

    葛筱璐, 王本义, 国承山 2016 光学学报 36 0301002

    Ge X L, Wang B Y, Guo C S 2016 Acta Opt. Sin. 36 0301002

    [12]

    Ge X L, Wang B Y, Guo C S 2015 J. Opt. Soc. Am. A 32 837

    [13]

    Li J, Chen X, Duffie S M, Najjar M A, Rafsanjani H, Korotkova O 2019 Opt. Commun. 446 178Google Scholar

    [14]

    Sandalidis H G 2011 Appl. Opt. 50 952Google Scholar

    [15]

    柯熙政, 邓莉君 2016 无线光通信中的部分相干光传输理论 (北京:科学出版社) 第14页

    Ke X Z, Deng L J 2016 The Theory of Partially Coherent Optical Transmission in Wireless Optical Communication (Beijing: Science Press) p14 (in Chinese)

    [16]

    Aksenov V P, Pogutsa C E 2012 Appl. Opt 51 7262Google Scholar

    [17]

    Huang Y, Yuan Y S, Liu X L, Zeng J, Wang F, Yu J Y, et al 2018 Appl. Sci 8 2476Google Scholar

    [18]

    Wu G H, Dai W, Tang H, Guo H 2015 Opt. Commun. 336 55Google Scholar

    [19]

    Xu Y G, Tian H H, Dan Y Q, Feng H, Wang S J 2017 J. Mod. Opt. 64 844Google Scholar

    [20]

    狄颢萍, 张淇博, 周木春, 辛煜, 赵琦 2018 中国激光 45 0305001

    Di H P, Zhang Q B, Zhou M C, Xin Y, Zhao Q 2018 Chin. J. Laser 45 0305001

    [21]

    程振, 楚兴春, 赵尚弘, 邓博于, 张曦文 2015 中国激光 42 1213002

    Cheng Z, Chu X C, Zhao S H, Deng B Y, Zhang X W 2015 Chin. J. Laser 42 1213002

    [22]

    Dabby F W, Whinnery J R 1968 Appl. Phys. Lett. 13 284Google Scholar

    [23]

    Born M, Wolf E 1997 Principles of Optics (6th ed.) (Cambridge: Cambridge University Press)

    [24]

    Pu J X, Zhang H H 1998 Opt. Commun. 151 331Google Scholar

    [25]

    Chu X X, Zhou G Q 2007 Opt. Express 15 7697Google Scholar

    [26]

    钱仙妹, 朱文越, 饶瑞中 2009 物理学报 58 6633Google Scholar

    Qian X M, Zhu W Y, Rao R Z 2009 Acta. Phys. Sin. 58 6633Google Scholar

    [27]

    Fleck J A, Morris J R, Feit M D 1976 Appl. Phys. 10 129

    [28]

    Ke X Z, Lei S C 2016 Appl. Opt. 55 3897Google Scholar

    [29]

    李大海, 曹益平, 张启灿, 王琼华 2013 现代工程光学 (北京: 科学出版社) 第217页

    Li D H, Cao Y P, Zhang Q C, Wang Q H 2013 XianDai GongCheng GuangXue (Beijing: Science Press) p217 (in Chinese)

    [30]

    陈鸣, 高太长, 刘磊, 胡帅, 曾庆伟, 李刚, 等 2017 强激光与粒子束 29 091008

    Chen M, Gao T C, Liu L, Hu S, Zeng Q W, Li G, et al 2017 High Power Laser and Particle Beams 29 091008

  • [1] Liu Jun-Jie, Sheng Quan, Wang Meng, Zhang Jun-Xiang, Geng Xing-Ning, Shi Zheng, Wang Ai-Hua, Shi Wei, Yao Jian-Quan. High-order Laguerre-Gaussian mode laser generated based on spherical aberration cavity. Acta Physica Sinica, 2022, 71(1): 014204. doi: 10.7498/aps.71.20211514
    [2] Huang Zi-Yue, Deng Yu, Ji Xiao-Ling. Influence of spherical aberration on beam quality of high-power laser beams propagating upwards in the atmosphere. Acta Physica Sinica, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [3] Wang Li, Liu Jing-Si, Li Ji, Zhou Xiao-Lin, Chen Xiang-Rong, Liu Chao-Fei, Liu Wu-Ming. The research progress of topological properties in spinor Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [4] Jiang Guang-Yu, Sun Chao, Li Qin-Ran. Effect of mesoscale eddies on the vertical spatial characteristics of wind-generated noise in deep ocean. Acta Physica Sinica, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [5] Li Yao-Yi, Jia Jin-Feng. Search for Majorana zero mode in the magnetic vortex of artificial topological superconductor. Acta Physica Sinica, 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [6] Yao Qiang-Qiang, Wang Qi-Han, Feng Chi, Chen Si, Jin Guang-Yong, Dong Yuan. Numerical simulation of effect of pump distribution on spherical aberration of end-pumped laser. Acta Physica Sinica, 2018, 67(17): 174204. doi: 10.7498/aps.67.20180113
    [7] Liu Yang-Yang, Lü Qun-Bo, Wu Ge, Pei Lin-Lin, Wang Jian-Wei. Analysis on the simplified optic coma effect on spectral image inversion of coded aperture spectral imager. Acta Physica Sinica, 2015, 64(5): 054205. doi: 10.7498/aps.64.054205
    [8] Chen Guang-Ping. Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential. Acta Physica Sinica, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [9] Li Xiao-Qing, Wang Tao, Ji Xiao-Ling. Experimental study on propagation properties of spherically aberrated beams through atmospheric turbulence. Acta Physica Sinica, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [10] Shi Liang-Ma, Zhou Ming-Jian, Zhu Ren-Yi. Evolution of vortex configuration for superconducting ring in the presence of an externally applied field. Acta Physica Sinica, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [11] Liu Chao-Fei, Wan Wen-Juan, Zhang Gan-Yuan. Vortex pattern in spin-orbit coupled spin-1 Bose-Einstein condensate of 23Na. Acta Physica Sinica, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [12] Zhou Yu, Zhou Qing-Chun, Ma Xiao-Dong. Vortex of an anomalous mode in Fermi gas near unitarity limit. Acta Physica Sinica, 2013, 62(14): 140301. doi: 10.7498/aps.62.140301
    [13] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [14] Luo Ya-Mei, Lü Bai-Da. Focusing of an anomalous hollow beam by a spherically aberrated aperture lens and its phase singularities in the focal region. Acta Physica Sinica, 2009, 58(6): 3915-3922. doi: 10.7498/aps.58.3915
    [15] Zheng Wei-Wei, Wang Li-Qin, Xu Jing-Ping, Wang Li-Gang. Studies on propagation of laser beam array with initial phase distributions in a turbulent atmosphere. Acta Physica Sinica, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [16] Huang Si-Xun, Cai Qi-Fa, Xiang Jie, Zhang Ming. On decomposition of typhoon flow field. Acta Physica Sinica, 2007, 56(5): 3022-3027. doi: 10.7498/aps.56.3022
    [17] Li Yong-Qing, Li Xi-Guo, Liu Zi-Yu, Luo Pei-Yan, Zhang Peng-Ming. New vortex solutions of Jackiw-Pi model. Acta Physica Sinica, 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [18] Wang Li, Wang Qing-Feng, Wang Xi-Qing, Lü Bai-Da. Transversal optical vortex in the interference field of two off-axis Gaussian beams. Acta Physica Sinica, 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [19] Zhao Guang-Pu, Lü Bai-Da. Diffraction-induced spectral switches of spherically aberrated polychromatic Gaussian beams. Acta Physica Sinica, 2004, 53(9): 2974-2979. doi: 10.7498/aps.53.2974
    [20] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
Metrics
  • Abstract views:  7788
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  20 August 2019
  • Accepted Date:  15 October 2019
  • Available Online:  14 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回