Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband acoustic triggers based on multiport waveguide structures

Pang Nai-Qi Wang Yin Ge Yong Shi Bin-Jie Yuan Shou-Qi Sun Hong-Xiang

Citation:

Broadband acoustic triggers based on multiport waveguide structures

Pang Nai-Qi, Wang Yin, Ge Yong, Shi Bin-Jie, Yuan Shou-Qi, Sun Hong-Xiang
cstr: 32037.14.aps.72.20230594
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The study of acoustic information processing has attracted great attention owing to its advantages of anti-electromagnetic interference and low energy consumption. Acoustic logic device, as a fundamental component, plays an important role in designing integrated acoustic systems. In the past few years, with the rapid development of sonic crystals, acoustic metamaterials and metasurfaces, researchers have demonstrated a variety of acoustic logic gates based on different mechanisms, and have devoted their efforts to the promotion of the practical applications. The more complex acoustic triggers with broad bandwidth and subwavelength size are very important for developing integrated sound devices, but it is difficult to realize them. In this work, we design two types of acoustic triggers based on the mechanisms of linear interference and phase modulation. The acoustic trigger with a width of 0.32λ and length of 0.82λ is composed of phased unit cells and multi-port waveguide structures, showing a subwavelength structure. Based on the phase modulation of the phased unit cells and the mechanism of linear interferences, the acoustic T-type trigger and D-type trigger with the same threshold are designed and demonstrated experimentally. The corresponding working bands of the T-type and D-type triggers are 3.293–4.069 kHz and 3.400–4.138 kHz, and their fractional bandwidths (the ratio of the bandwidth to the center frequency) can reach about 0.23 and 0.22, respectively, showing a broadband characteristic of both triggers. The mechanism of the T-type trigger is attributed to the linear interference caused by two phased unit cells with a phase difference of π. However, the realization of the D-type trigger is closely related to the incident sound energy and the phase modulation caused by the phased unit cell in the control port. The measured results and simulated results agree well with each other. Compared with other types of acoustic logic devices, the designed acoustic triggers have the advantages of broad bandwidth, subwavelength size, same threshold, and passive structure, as well as being easy to integrate, thus providing great potential applications in acoustic computing, acoustic communication, acoustic information processing and integrated acoustics. Our experimental demonstration of acoustic triggers can further promote the theoretical and experimental investigations of basic acoustic components.
      Corresponding author: Sun Hong-Xiang, jsdxshx@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274183, 12174159) and the National Key R&D Program of China (Grant No. 2020YFC1512403).
    [1]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nat. Mater. 9 989Google Scholar

    [2]

    Li X F, Ni X, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301Google Scholar

    [3]

    Liang B, Kan W, Zou X, Yin L, Cheng J 2014 Appl. Phys. Lett. 105 083510Google Scholar

    [4]

    Babaee S, Viard N, Wang P, Fang N X, Bertoldi K 2016 Adv. Mater. 28 1631Google Scholar

    [5]

    Nan T, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [6]

    Zuo S Y, Wei Q, Tian Y, Cheng Y, Liu X J 2018 Sci. Rep. 8 10103Google Scholar

    [7]

    Wu Y D 2021 Prog. Electromagn. Res. 170 79Google Scholar

    [8]

    Li F, Anzel P, Yang J, Kevrekidis P G, Daraio C 2014 Nat. Commun. 5 5311Google Scholar

    [9]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [10]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [11]

    Bringuier S, Swinteck N, Vasseur J O, Robillard J F, Runge K, Muralidharan K, Deymier P A 2011 J. Acoust. Soc. Am. 130 1919Google Scholar

    [12]

    Zhang T, Cheng Y, Guo J Z, Xu J Y, Liu X J 2015 Appl. Phys. Lett. 106 113503Google Scholar

    [13]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [14]

    Xia J P, Jia D, Sun H X, Yuan S Q, Ge Y, Si Q R, Liu X J 2018 Adv. Mater. 30 1805002Google Scholar

    [15]

    Tian Z, Shen C, Li J, Reit E, Bachman H, Socolar J E S, Cummer S A, Huang J 2020 Nat. Commun. 11 762Google Scholar

    [16]

    Jia D, Wang Y, Ge Y, Yuan S Q, Sun H X 2021 Prog. Electromagn. Res. 172 13Google Scholar

    [17]

    Yan Q H, Chen H S, Yang Y H 2021 Prog. Electromagn. Res. 172 33Google Scholar

    [18]

    李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科 2022 物理学报 71 244302Google Scholar

    Li Y M, Kong P, Bi R G, He Z J, Deng K 2022 Acta Phys. Sin. 71 244302Google Scholar

    [19]

    Lu Y J, Wang Y, Ge Y, Yuan S Q, Jia D, Sun H X, Liu X J 2022 Appl. Phys. Lett. 121 123506Google Scholar

    [20]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar

    [21]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [22]

    Li J, Fok L, Yin X, Bartal G, Zhang X 2009 Nat. Mater. 8 931Google Scholar

    [23]

    Lai Y, Wu Y, Sheng P, Zhang Z Q 2011 Nat. Mater. 10 620Google Scholar

    [24]

    Liang Z, Li J 2012 Phys. Rev. Lett. 108 114301Google Scholar

    [25]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar

    [26]

    Cummer S A, Christensen J, Alù A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [27]

    Zhang T, Cheng Y, Yuan B G, Guo J Z, Liu X J 2016 Appl. Phys. Lett. 108 183508Google Scholar

    [28]

    Zuo C Y, Xia J P, Sun H X, Ge Y, Yuan S Q, Liu X J 2017 Appl. Phys. Lett. 111 243501Google Scholar

    [29]

    Wang Y, Xia J P, Sun H X, Yuan S Q, Liu X J 2019 Sci. Rep. 9 8355Google Scholar

    [30]

    Li Z P, Cao G T, Li C H, Dong S H, Deng Y, Liu X K, Ho J S, Qiu C W 2021 Prog. Electromagn. Res. 171 1Google Scholar

    [31]

    胥强荣, 沈承, 韩峰, 卢天健 2021 物理学报 70 244302Google Scholar

    Xu Q R, Shen C, Han F, Lu T J 2021 Acta Phys. Sin. 70 244302Google Scholar

    [32]

    Liao G X, Wang Z W, Luan C C, Liu J P, Yao X H, Fu J Z 2021 Smart Mater. Struct. 30 045021Google Scholar

    [33]

    Hazra S, Ghosh B, Sarkar P P 2019 J. Opt. 48 375Google Scholar

    [34]

    Bharti G K, Sonkar R K 2022 Opt. Quantum Electron. 54 176Google Scholar

  • 图 1  (a) 相控单元示意图; (b) 频率为3.43 kHz的声波通过具有不同参数θ的单元产生的相位延迟与透射率; (c) 声触发器示意图. T和Qn端口的红色箭头表示输入声信号, Qn+1端口的蓝色箭头表示输出声信号

    Figure 1.  (a) Schematic of a phased unit cell; (b) phase delays (blue solid line) and transmissions (red dashed line) of sound wave with frequency of 3.43 kHz caused by the phased unit cells with different values of θ; (c) schematic of an acoustic trigger. The red arrows at the ports T and Qn represent input sound signals, and the blue arrows at the port Qn+1 are output sound signals.

    图 2  (a) 数值模拟频率为3.43 kHz不同输入态激发T触发器产生的声压幅值场分布; (b), (c) 对应的输出端Qn+1的声能级和真值表

    Figure 2.  (a) Simulated pressure amplitude distributions caused by the T-type trigger with different input states at 3.43 kHz; (b), (c) simulated acoustic intensity levels at the output port Qn+1 and truth table.

    图 3  数值模拟声波通过具有不同参数θ的单元(斜挡板宽度为3w)产生的相位延迟 (蓝色实线)及透射率(红色虚线)

    Figure 3.  Simulated phase delays (blue solid line) and transmissions (red dashed line) caused by the phased unit cells with different values of θ.

    图 4  (a) 数值模拟频率为3.43 kHz不同输入态激发D触发器产生的声压幅值场分布; (b), (c)对应的输出端Qn+1的声能级和真值表

    Figure 4.  (a) Simulated pressure amplitude distributions caused by the D-type trigger with different input states at 3.43 kHz; (b), (c) simulated acoustic intensity levels at the output port Qn+1 and truth table.

    图 5  (a) 实验装置示意图; (b), (c) T型与D型触发器样品照片; (d), (e) 实验测量的频率为3.43 kHz的不同输入态声波激发T触发器和D触发器对应输出端Qn+1的声能级

    Figure 5.  (a) Schematic of experimental set-up; (b), (c) photographs of the T-type trigger and D-type trigger; (d), (e) experimental measurement of the acoustic intensity levels at the output port Qn+1 of T-type trigger and D-type trigger at a frequency of 3.43 kHz.

    图 6  T触发器(a)和D触发器(b)输出端处的不同输入态对应的声能级谱. 黑色阴影区域范围分别为(a) 3.293— 4.069 kHz, (b) 3.400—4.138 kHz

    Figure 6.  Measured intensity level spectra at the output ports of the T-type trigger (a) and D-type trigger (b) for different input states. Black shaded regions cover the ranges of 3.293–4.069 kHz in panel (a) and 3.400–4.138 kHz in panel (b).

  • [1]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nat. Mater. 9 989Google Scholar

    [2]

    Li X F, Ni X, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301Google Scholar

    [3]

    Liang B, Kan W, Zou X, Yin L, Cheng J 2014 Appl. Phys. Lett. 105 083510Google Scholar

    [4]

    Babaee S, Viard N, Wang P, Fang N X, Bertoldi K 2016 Adv. Mater. 28 1631Google Scholar

    [5]

    Nan T, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [6]

    Zuo S Y, Wei Q, Tian Y, Cheng Y, Liu X J 2018 Sci. Rep. 8 10103Google Scholar

    [7]

    Wu Y D 2021 Prog. Electromagn. Res. 170 79Google Scholar

    [8]

    Li F, Anzel P, Yang J, Kevrekidis P G, Daraio C 2014 Nat. Commun. 5 5311Google Scholar

    [9]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [10]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [11]

    Bringuier S, Swinteck N, Vasseur J O, Robillard J F, Runge K, Muralidharan K, Deymier P A 2011 J. Acoust. Soc. Am. 130 1919Google Scholar

    [12]

    Zhang T, Cheng Y, Guo J Z, Xu J Y, Liu X J 2015 Appl. Phys. Lett. 106 113503Google Scholar

    [13]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [14]

    Xia J P, Jia D, Sun H X, Yuan S Q, Ge Y, Si Q R, Liu X J 2018 Adv. Mater. 30 1805002Google Scholar

    [15]

    Tian Z, Shen C, Li J, Reit E, Bachman H, Socolar J E S, Cummer S A, Huang J 2020 Nat. Commun. 11 762Google Scholar

    [16]

    Jia D, Wang Y, Ge Y, Yuan S Q, Sun H X 2021 Prog. Electromagn. Res. 172 13Google Scholar

    [17]

    Yan Q H, Chen H S, Yang Y H 2021 Prog. Electromagn. Res. 172 33Google Scholar

    [18]

    李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科 2022 物理学报 71 244302Google Scholar

    Li Y M, Kong P, Bi R G, He Z J, Deng K 2022 Acta Phys. Sin. 71 244302Google Scholar

    [19]

    Lu Y J, Wang Y, Ge Y, Yuan S Q, Jia D, Sun H X, Liu X J 2022 Appl. Phys. Lett. 121 123506Google Scholar

    [20]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar

    [21]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [22]

    Li J, Fok L, Yin X, Bartal G, Zhang X 2009 Nat. Mater. 8 931Google Scholar

    [23]

    Lai Y, Wu Y, Sheng P, Zhang Z Q 2011 Nat. Mater. 10 620Google Scholar

    [24]

    Liang Z, Li J 2012 Phys. Rev. Lett. 108 114301Google Scholar

    [25]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar

    [26]

    Cummer S A, Christensen J, Alù A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [27]

    Zhang T, Cheng Y, Yuan B G, Guo J Z, Liu X J 2016 Appl. Phys. Lett. 108 183508Google Scholar

    [28]

    Zuo C Y, Xia J P, Sun H X, Ge Y, Yuan S Q, Liu X J 2017 Appl. Phys. Lett. 111 243501Google Scholar

    [29]

    Wang Y, Xia J P, Sun H X, Yuan S Q, Liu X J 2019 Sci. Rep. 9 8355Google Scholar

    [30]

    Li Z P, Cao G T, Li C H, Dong S H, Deng Y, Liu X K, Ho J S, Qiu C W 2021 Prog. Electromagn. Res. 171 1Google Scholar

    [31]

    胥强荣, 沈承, 韩峰, 卢天健 2021 物理学报 70 244302Google Scholar

    Xu Q R, Shen C, Han F, Lu T J 2021 Acta Phys. Sin. 70 244302Google Scholar

    [32]

    Liao G X, Wang Z W, Luan C C, Liu J P, Yao X H, Fu J Z 2021 Smart Mater. Struct. 30 045021Google Scholar

    [33]

    Hazra S, Ghosh B, Sarkar P P 2019 J. Opt. 48 375Google Scholar

    [34]

    Bharti G K, Sonkar R K 2022 Opt. Quantum Electron. 54 176Google Scholar

  • [1] XU Yifan, DENG Ye, TONG Wanting, WANG Haifeng, WANG Xueyun, ZHAO Junming, JIANG Tian, ZHANG Shengkang, CHEN Ke, FENG Yijun. Reconfigurable metasurface achieved dynamic beam control and information modulation of L-band beams. Acta Physica Sinica, 2025, 74(10): 108101. doi: 10.7498/aps.74.20241668
    [2] Wei Jia-Xin, Sha Peng-Fei, Fang Xu-Chen, Lu Zeng-Xiong, Li Hui, Tan Fang-Rui, Wu Xiao-Bin. Illumination homogenization of highly coherent light source based on phase modulation. Acta Physica Sinica, 2024, 73(15): 154101. doi: 10.7498/aps.73.20240644
    [3] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] Luo Wen, Chen Tian-Jiang, Zhang Fei-Zhou, Zhou Kai, An Jian-Zhu, Zhang Jian-Zhu. Active illumination uniformity with narrow spectrum laser based on ladderlike phase modulation. Acta Physica Sinica, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [5] Dai Shu-Tao, Jiang Tao, Wu Li-Xia, Wu Hong-Chun, Lin Wen-Xiong. Single-axial-mode Nd:YAG laser with precisely controllable laser pulse output time. Acta Physica Sinica, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [6] Du Jun, Yang Na, Li Jun-Ling, Qu Yan-Chen, Li Shi-Ming, Ding Yun-Hong, Li Rui. Improvement of phase modulation laser Doppler shift measurement method. Acta Physica Sinica, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [7] Kang Da, Luo Bin, Yan Lian-Shan, Pan Wei, Zou Xi-Hua. Supperssion of higher order modes in gain-guided index-antiguided planar waveguide laser. Acta Physica Sinica, 2018, 67(10): 104204. doi: 10.7498/aps.67.20180138
    [8] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [9] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun. Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector. Acta Physica Sinica, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [10] Yuan Qiang, Zhao Wen-Xuan, Ma Rui, Zhang Chen, Zhao Wei, Wang Shuang, Feng Xiao-Qiang, Wang Kai-Ge, Bai Jin-Tao. Sub-diffraction-limit spatially structured light pattern based on polarized beam phase modulation. Acta Physica Sinica, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [11] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [12] Wan Wen-Jian, Yin Rong, Tan Zhi-Yong, Wang Feng, Han Ying-Jun, Cao Jun-Cheng. Study of 2.9 THz quantum cascade laser based on bound-to-continuum transition. Acta Physica Sinica, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [13] Du Jun, Zhao Wei-Jiang, Qu Yan-Chen, Chen Zhen-Lei, Geng Li-Jie. Laser Doppler shift measuring method based on phase modulater and Fabry-Perot interferometer. Acta Physica Sinica, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [14] Su Qian-Qian, Zhang Guo-Wen, Pu Ji-Xiong. The propagation characteristics of a Gaussian beam passing through the thick nonlinear medium with defects. Acta Physica Sinica, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [15] Luo Bo-Wen, Dong Jian-Ji, Wang Xiao, Huang De-Xiu, Zhang Xin-Liang. Multi-channel multifunctional optical differentiator based on phase modulation and linear filtering. Acta Physica Sinica, 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [16] MaYan-Xing, Wang Xiao-Lin, Zhou Pu, Ma Hao-Tong, Zhao Hai-Chuan, Xu Xiao-Jun, Si Lei, Liu Ze-Jin, Zhao Yi-Jun. Effect of atmosphere turbulence on phase modulation signals in coherent beam combination with multi-dithering technique. Acta Physica Sinica, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [17] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [18] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] Cai Dong-Mei, Ling Ning, Jiang Wen-Han. The performance of phase-only liquid crystal spatial light modulator used for generating Zernike terms. Acta Physica Sinica, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] Zhang Hui-Lan, Zhang Guang-Yong, Wang Cheng, Liu Shi-Xiong, Liu Jin-Song. Waveguide induced by bright holographic solitons. Acta Physica Sinica, 2007, 56(1): 236-239. doi: 10.7498/aps.56.236
Metrics
  • Abstract views:  3378
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2023
  • Accepted Date:  23 May 2023
  • Available Online:  20 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回