Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study of asymmetric breakup behavior of bubbles in Y-shaped branching microchannels

Pan Wen-Tao Wen Lin Li Shan-Shan Pan Zhen-Hai

Citation:

Numerical study of asymmetric breakup behavior of bubbles in Y-shaped branching microchannels

Pan Wen-Tao, Wen Lin, Li Shan-Shan, Pan Zhen-Hai
PDF
HTML
Get Citation
  • Microfluidic technology based on microchannel two-phase flow has been widely used. The precise control of the bubble or droplet size in the channel plays a crucial role in designing the microfluidic systems. In this work, the bubble breakup behavior in Y-shaped microchannel is reconstructed based on the volume of fluid method (VOF), and the effects of bubble dimensionless size (1.2–2.7), outlet flow ratio (1–4) and main channel Reynolds number (100–600) on the bubble breakup behavior are systematically investigated. The bubble asymmetric breakup process is found to be divided into three stages: extension stage, squeeze stage, and rapid pinch-off stage. In the case of small initial bubble size or relatively high outlet flow rate, the bubble does not break, but only experiences the extension stage and the squeezing stage. Four flow patterns of bubble breakup are further revealed for the bubbles with different sizes and outlet flow ratios: tunnel-tunnel breakup, obstruction-obstruction breakup, tunnel-obstruction breakup, and non-breakup. With the increase of outlet flow ratio, the breakup process of the bubble gradually becomes asymmetrical, and the flow pattern shifts along the tunnel-tunnel breakup and the obstruction-obstruction breakup, gradually turns toward the tunnel-obstruction breakup and non-breakup. On this basis, the critical flow ratio of bubble breakup and the variation of daughter bubble volume ratio with outlet flow ratio are obtained for different Reynolds numbers and initial bubble sizes, and the corresponding criterion correlation equation is refined, which can provide theoretical guidance for accurately regulating the daughter bubble size after breakup.
      Corresponding author: Li Shan-Shan, liss@sit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51706136) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China.
    [1]

    涂善东, 周帼彦, 于新海 2007 化工进展 26 2

    Tu S T, Zhou G Y, Yu X H 2007 Chem. Ind. Eng. Prog. 26 2

    [2]

    Teh S Y, Lin R, Hung L H, Lee A P 2008 Lab on Chip 8 198Google Scholar

    [3]

    王琳琳, 李国君, 田辉, 叶阳辉 2011 西安交通大学学报 45 9

    Wang L L, Li G J, Tian H, Ye Y H 2011 J. Xi'an Jiaotong. Univ. 45 9

    [4]

    王长亮, 靳遵龙, 王永庆, 王定标 2017 化工进展 36 S1

    Wang C L, Jin Z L, Wang Y Q, Wang D B 2017 Chem. Ind. Eng. Prog 36 S1

    [5]

    乐军, 陈光文, 袁权, 罗灵爱, Hervé L G 2006 化工学报 57 6Google Scholar

    Le J, Chen G W, Yuan Q 2006 J. Chem. Ind. Eng. (China) 57 6Google Scholar

    [6]

    梁宏, 柴振华, 施保昌 2016 物理学报 65 204701Google Scholar

    Liang H, Cai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701Google Scholar

    [7]

    Wang H 2019 Langmuir 35 32

    [8]

    Zhang J Z, Li W 2016 Int. Commun. Heat Mass Transf. 74 1Google Scholar

    [9]

    Talimi V, Muzychka Y S, Kocabiyik S 2012 Int. J. Multiphase Flow 39 88104

    [10]

    Seemann R, Brinkmann M, Pfohl T, Herminghaus S 2012 Rep. Prog. Phys. 75 016601Google Scholar

    [11]

    Squires T M, Quake S R 2005 Rev. Mod. Phys. 77 977Google Scholar

    [12]

    Stone H A, Kim S 2001 AIChE J. 47 1250Google Scholar

    [13]

    侯璟鑫, 钱刚, 周兴贵 2013 化工学报 64 6

    Hou J X, Qian G, Zhou X G 2013 J. Chem. Ind. Eng. (China) 64 6

    [14]

    Tan J, Du L, Xu J H, Wang K, Luo G S 2011 AIChE J. 57 2647Google Scholar

    [15]

    刘赵淼, 刘丽昆, 申峰 2014 机械工程学报 50 8

    Liu Z M, Liu L K, Shen F 2014 Chin. J. Mech. Eng. 50 8

    [16]

    王维萌, 马一萍, 王澎, 陈斌 2015 工程热物理学报 36 2

    Wang W M, Ma Y P, Wang P, Chen B 2015 J. Eng. Therm. 36 2

    [17]

    Ma D F, Liang D, Zhu C Y, Fu T T, Ma Y G 2020 Chem. Eng. Sci. 10 1016

    [18]

    Carlson A, Do-Quang M, Amberg G 2010 Int. J. Multiphase Flow 36 397Google Scholar

    [19]

    Samie M, Salari A, Shafii M B 2013 Phys. Rev. E 87 053003Google Scholar

    [20]

    Zheng M M, Ma Y L, Jin T M, Wang J T 2016 Microfluid Nanofluid 20 107Google Scholar

    [21]

    温宇, 朱春英, 付涛涛, 马友光 2016 高校化学工程学报 30 19Google Scholar

    Wen Y, Zhu C Y, Fu T T, Ma Y G 2016 J. Chem. Eng. Chin. Univ. 30 19Google Scholar

    [22]

    Calderon A J, Heo Y S, Huh D, Futai N, Takayama S, Fowlkes J B 2006 Appl. Phys. Lett. 89 299

    [23]

    丛振霞, 朱春英, 付涛涛, 马友光 2014 化工学报 65 93Google Scholar

    Cong Z X, Zhu C Y, Fu T T, Ma Y G 2014 J. Chem. Ind. Eng. (China) 65 93Google Scholar

    [24]

    Menetrier-Deremble L, Tabeling P 2006 Phys Rev. E 74 035303

    [25]

    Lou Q, Li T, Yang M 2019 J. Appl. Phys. 126 034301Google Scholar

    [26]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335Google Scholar

    [27]

    Fluent, ANSYS FLUENT 17.0: User's Guide, 2016, ANSYS-Fluent Inc., Canonsburg, PA.

    [28]

    Xu Z Y, Fu T T, Zhu C Y, Jiang S K, Wang K 2019 Electrophoresis 40 376Google Scholar

    [29]

    Gupta R, Fletcher D F, Haynes B S 2009 Chem. Eng. Sci. 64 29

    [30]

    Pan Z H, Weibel J A, Garimella S V 2015 Numerical Heat Transfer, Part A 67 1

    [31]

    Wang X, Liu Z M, Pang Y 2019 Chem. Eng. Sci. 197 258Google Scholar

    [32]

    Wang X, Zhu C, Wu Y, Fu T, Ma Y 2015 Chem. Eng. Sci. 132 128Google Scholar

    [33]

    Jullien M C, Tsang Mui Ching M J, Cohen C, Menetrier L, Tabeling P 2009 Phys. Fluids 21 072001Google Scholar

    [34]

    Leshansky A M, Pismen L M 2009 Phys. Fluids 21 023303Google Scholar

  • 图 1  (a) 孤立气泡通过Y型分支微通道的示意图; (b) Y型结区域的网格模型

    Figure 1.  (a) Schematic illustration of an isolated bubble traveling through a Y-shaped branching microchannel; (b) mesh generation in Y-junction region.

    图 2  气液两相流模型的验证: 数值结果与实验结果的比较[28]

    Figure 2.  Validation of hydrodynamic model: Comparison between numerical results (by present model) and experimental results[28]

    图 3  网格无关性检验: $t^* $ = 27.8时的气泡轮廓

    Figure 3.  Mesh independence study: Bubble profile at the dimensionless time instant of 27.8.

    图 4  Y型分支微通道中气泡轮廓的演化 (a) Re = 100, λ = 1; (b) Re = 300, λ = 1; (c) Re = 300, λ = 2; (d) Re = 300, λ = 4

    Figure 4.  Evolution of bubble profile in Y-junction region: (a) Re = 100, λ = 1; (b) Re = 300, λ = 1; (c) Re = 300, λ = 2; (d) Re = 300, λ = 4.

    图 5  气泡的4种破裂模式 (a) 隧道-隧道破裂; (b) 阻塞-阻塞破裂; (c) 隧道-阻塞破裂; (d) 不破裂

    Figure 5.  Different flow patterns of bubble breakup: (a) Tunnel-tunnel breakup; (b) obstruction-obstruction breakup; (c) tunnel-obstruction breakup; (d) non-breakup.

    图 6  液相的挤压力和剪切力分布 (a) 隧道-隧道破裂; (b) 阻塞-阻塞破裂; (c) 隧道-阻塞破裂

    Figure 6.  Liquid-phase squeezing pressure and shear force distribution during bubble motion: (a) Tunnel-tunnel breakup; (b) obstruction-obstruction breakup; (c) tunnel-obstruction breakup.

    图 7  不同流量比下气泡的破裂模式相图 (a) λ = 1.0; (b) λ = 1.5; (c) λ = 2.0; (d) λ = 2.5

    Figure 7.  Bubble breakup modes at different flow ratios: (a) λ = 1.0; (b) λ = 1.5; (c) λ = 2.0; (d) λ = 2.5.

    图 8  不同流量比(λ)下分支通道中子气泡的体积比(Rv) (a) $V^* $= 2.7; (b) $V^* $= 2.2; (c) $V^* $= 1.7

    Figure 8.  Volume ratio (Rv) of daughter bubbles in branching channel with different outlet flow ratio (λ): (a) $V^* $= 2.7; (b) $V^* $= 2.2; (c) $V^* $= 1.7.

    图 9  不同气泡尺寸下的临界破裂流量比(λc)

    Figure 9.  Critical fracture flow ratio (λc) at different bubble volume.

    表 1  水和空气的物理性质(20 ℃)

    Table 1.  Physical parameters of water and air (20 ℃)

    流体类型密度/(kg·m–3)黏性系
    数/(Pa·s)
    表面张力
    系数/(N·m–1)
    空气1.2250.000018
    998.20.001005 0.07275
    DownLoad: CSV

    表 2  网格无关性验证: 气泡长度对比

    Table 2.  Mesh-independent study: Comparison of bubble length.

    算例网格 1网格 2网格 3网格 4
    网格数499890100317015865302401453
    雷诺数100600100600100600100600
    气泡长度$l^* $2.1222.5632.1962.5952.1872.5892.1902.592
    |误差($l^* $)|/%3.111.120.270.120.140.12
    DownLoad: CSV

    表 3  经验公式(11)的拟合参数值

    Table 3.  Fitting parameter values of empirical formula (11).

    Re
    100200300400500600
    a11.471.451.351.301.251.22
    b15.0 ×
    10–7
    1.1 ×
    10–7
    1.0 ×
    10–4
    5.8 ×
    10–3
    4.6 ×
    10–3
    2.2 ×
    10–4
    c10.420.571.152.082.252.65
    a20.0010.0010.0010.020.020.02
    b29.9 ×
    10–5
    1.201.581.070.660.81
    c20.500.981.232.052.242.50
    a30.0010.0010.0010.0050.010
    b30.47–0.360.150.03–0.13
    c30.851.001.201.631.98
    DownLoad: CSV

    表 4  经验公式(12)的拟合参数值

    Table 4.  Fitting parameter values of empirical formula (12).

    ij
    $V^* $= 1.7–0.790.025
    $V^* $= 2.2–0.440.034
    $V^* $= 2.7–1.540.054
    DownLoad: CSV
  • [1]

    涂善东, 周帼彦, 于新海 2007 化工进展 26 2

    Tu S T, Zhou G Y, Yu X H 2007 Chem. Ind. Eng. Prog. 26 2

    [2]

    Teh S Y, Lin R, Hung L H, Lee A P 2008 Lab on Chip 8 198Google Scholar

    [3]

    王琳琳, 李国君, 田辉, 叶阳辉 2011 西安交通大学学报 45 9

    Wang L L, Li G J, Tian H, Ye Y H 2011 J. Xi'an Jiaotong. Univ. 45 9

    [4]

    王长亮, 靳遵龙, 王永庆, 王定标 2017 化工进展 36 S1

    Wang C L, Jin Z L, Wang Y Q, Wang D B 2017 Chem. Ind. Eng. Prog 36 S1

    [5]

    乐军, 陈光文, 袁权, 罗灵爱, Hervé L G 2006 化工学报 57 6Google Scholar

    Le J, Chen G W, Yuan Q 2006 J. Chem. Ind. Eng. (China) 57 6Google Scholar

    [6]

    梁宏, 柴振华, 施保昌 2016 物理学报 65 204701Google Scholar

    Liang H, Cai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701Google Scholar

    [7]

    Wang H 2019 Langmuir 35 32

    [8]

    Zhang J Z, Li W 2016 Int. Commun. Heat Mass Transf. 74 1Google Scholar

    [9]

    Talimi V, Muzychka Y S, Kocabiyik S 2012 Int. J. Multiphase Flow 39 88104

    [10]

    Seemann R, Brinkmann M, Pfohl T, Herminghaus S 2012 Rep. Prog. Phys. 75 016601Google Scholar

    [11]

    Squires T M, Quake S R 2005 Rev. Mod. Phys. 77 977Google Scholar

    [12]

    Stone H A, Kim S 2001 AIChE J. 47 1250Google Scholar

    [13]

    侯璟鑫, 钱刚, 周兴贵 2013 化工学报 64 6

    Hou J X, Qian G, Zhou X G 2013 J. Chem. Ind. Eng. (China) 64 6

    [14]

    Tan J, Du L, Xu J H, Wang K, Luo G S 2011 AIChE J. 57 2647Google Scholar

    [15]

    刘赵淼, 刘丽昆, 申峰 2014 机械工程学报 50 8

    Liu Z M, Liu L K, Shen F 2014 Chin. J. Mech. Eng. 50 8

    [16]

    王维萌, 马一萍, 王澎, 陈斌 2015 工程热物理学报 36 2

    Wang W M, Ma Y P, Wang P, Chen B 2015 J. Eng. Therm. 36 2

    [17]

    Ma D F, Liang D, Zhu C Y, Fu T T, Ma Y G 2020 Chem. Eng. Sci. 10 1016

    [18]

    Carlson A, Do-Quang M, Amberg G 2010 Int. J. Multiphase Flow 36 397Google Scholar

    [19]

    Samie M, Salari A, Shafii M B 2013 Phys. Rev. E 87 053003Google Scholar

    [20]

    Zheng M M, Ma Y L, Jin T M, Wang J T 2016 Microfluid Nanofluid 20 107Google Scholar

    [21]

    温宇, 朱春英, 付涛涛, 马友光 2016 高校化学工程学报 30 19Google Scholar

    Wen Y, Zhu C Y, Fu T T, Ma Y G 2016 J. Chem. Eng. Chin. Univ. 30 19Google Scholar

    [22]

    Calderon A J, Heo Y S, Huh D, Futai N, Takayama S, Fowlkes J B 2006 Appl. Phys. Lett. 89 299

    [23]

    丛振霞, 朱春英, 付涛涛, 马友光 2014 化工学报 65 93Google Scholar

    Cong Z X, Zhu C Y, Fu T T, Ma Y G 2014 J. Chem. Ind. Eng. (China) 65 93Google Scholar

    [24]

    Menetrier-Deremble L, Tabeling P 2006 Phys Rev. E 74 035303

    [25]

    Lou Q, Li T, Yang M 2019 J. Appl. Phys. 126 034301Google Scholar

    [26]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335Google Scholar

    [27]

    Fluent, ANSYS FLUENT 17.0: User's Guide, 2016, ANSYS-Fluent Inc., Canonsburg, PA.

    [28]

    Xu Z Y, Fu T T, Zhu C Y, Jiang S K, Wang K 2019 Electrophoresis 40 376Google Scholar

    [29]

    Gupta R, Fletcher D F, Haynes B S 2009 Chem. Eng. Sci. 64 29

    [30]

    Pan Z H, Weibel J A, Garimella S V 2015 Numerical Heat Transfer, Part A 67 1

    [31]

    Wang X, Liu Z M, Pang Y 2019 Chem. Eng. Sci. 197 258Google Scholar

    [32]

    Wang X, Zhu C, Wu Y, Fu T, Ma Y 2015 Chem. Eng. Sci. 132 128Google Scholar

    [33]

    Jullien M C, Tsang Mui Ching M J, Cohen C, Menetrier L, Tabeling P 2009 Phys. Fluids 21 072001Google Scholar

    [34]

    Leshansky A M, Pismen L M 2009 Phys. Fluids 21 023303Google Scholar

  • [1] Zhao ziqing, Yan yu, Lou qin. Three-dimensional mesoscopic numerical simulation of the rising behavior of bubbles with large density ratio in porous media channels. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241678
    [2] Zhang Mu-An, Wang Jin-Qing, Wu Rui, Feng Zhi, Zhan Ming-Xiu, Xu Xu, Chi Zuo-He. Three-dimensional numerical simulation of Ostwald ripening characteristics of bubbles in porous medium. Acta Physica Sinica, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [3] Zhang Jin-Xin, Wang Xin, Guo Hong-Xia, Feng Juan, Lü Ling, Li Pei, Yan Yun-Yi, Wu Xian-Xiang, Wang Hui. Three-dimensional simulation of total ionizing dose effect on SiGe heterojunction bipolor transistor. Acta Physica Sinica, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [4] He Chuan-Hui, Liu Gao-Jie, Lou Qin. Behavior of bubble with high density ratio in a microchannel with asymmetric obstacles. Acta Physica Sinica, 2021, 70(24): 244701. doi: 10.7498/aps.70.20211328
    [5] 3D Simulation Study on the Mechanism of Influence Factor of Total Dose Ionizing Effect on SiGe HBT. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211795
    [6] Zhu Hai-Long, Li Xue-Ying, Tong Hong-Hui. Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma. Acta Physica Sinica, 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [7] Numerical study on the asymmetric breakup behavior of bubbles in Y-shaped branching microchannels. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210832
    [8] Yu Wei, Deng Zi-Long, Wu Su-Chen, Yu Cheng, Wang Chao. Hydrodynamics of double emulsion passing through a microfuidic Y-junction. Acta Physica Sinica, 2019, 68(5): 054701. doi: 10.7498/aps.68.20181877
    [9] Lou Qin,  Li Tao,  Yang Mo. Lattice Boltzmann simulations of rising bubble driven by buoyancy in a complex microchannel. Acta Physica Sinica, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [10] Zhou Jian-Hong, Tong Bao-Hong, Wang Wei, Su Jia-Lei. Numerical simulation of deformation and rupture process of bubble in an oil film impacted by an oil droplet. Acta Physica Sinica, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [11] Zheng Hui, Zhang Chong-Hong, Sun Bo, Yang Yi-Tao, Bai Bin, Song Yin, Lai Xin-Chun. Study on early stage of phase-separation process with low volume ratio using lattice gas model in three dimensions. Acta Physica Sinica, 2013, 62(15): 156401. doi: 10.7498/aps.62.156401
    [12] Li Shuai, Zhang A-Man, Wang Shi-Ping. Experimental and numerical studies on “crown” spike generated by a bubble near free-surface. Acta Physica Sinica, 2013, 62(19): 194703. doi: 10.7498/aps.62.194703
    [13] Zhang Ming-kun, Chen Shuo, Shang Zhi. Numerical simulation of a droplet motion in a grooved microchannel. Acta Physica Sinica, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [14] Liu La-Qun, Liu Da-Gang, Wang Xue-Qiong, Zou Wen-Kang, Yang Chao. The implementation of the three-dimensional numerical simulation of the coaxial magnetically insulated transmission line with helical inductor. Acta Physica Sinica, 2012, 61(16): 162901. doi: 10.7498/aps.61.162901
    [15] Peng Kai, Liu Da-Gang, Liao Chen, Liu Sheng-Gang. Numerical simulation and study of electron cyclotron maser. Acta Physica Sinica, 2011, 60(9): 091301. doi: 10.7498/aps.60.091301
    [16] Pan Shi-Yan, Zhu Ming-Fang. Modelling of solutal dendritic growth in three dimensions. Acta Physica Sinica, 2009, 58(13): 278-S284. doi: 10.7498/aps.58.278
    [17] Zhang Ke-Ying, Guo Hong-Xia, Luo Yin-Hong, He Bao-Ping, Yao Zhi-Bin, Zhang Feng-Qi, Wang Yuan-Ming. Three-dimensional numerial simulation of single event upset effects in static random access memory. Acta Physica Sinica, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [18] Zhu Chang-Sheng, Feng Li, Wang Zhi-Ping, Xiao Rong-Zhen. Numerical simulation of three-dimensional dendritic growth using phase-field method. Acta Physica Sinica, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [19] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] Lu Xin-Pei, Pan Yuan, Zhang Han-Hong. . Acta Physica Sinica, 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
Metrics
  • Abstract views:  5374
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2021
  • Accepted Date:  20 October 2021
  • Available Online:  01 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回