-
Radio frequency (RF) thermal plasma involves abundant and complex physics. The understanding of the physical field distributions of the RF thermal plasma is helpful to its applications in industrial field. In this paper, an electro-thermal-magnetic-flow strong coupling mathematical and physical model of three-dimensional RF thermal plasma is established, the actual solenoid structure of the induction coil is considered, and a C++ code is developed for calculating the complex electromagnetic field in a customized version of the computational fluid dynamics commercial code FLUENT. The physical fields of RF thermal plasma, such as temperature field, flow field and electromagnetic field are studied. The electrical conductivity, thermal conductivity and viscosity distribution of the plasma are investigated. The results show that the physical field distribution of RF thermal plasma has an important non-axisymmetric three-dimensional effect due to the actual shape of the non-axisymmetric induction coil structure. The plasma discharge presents an annular distribution with a certain deflection angle. The distribution of plasma flow field shows a non-axisymmetric electromagnetic pump effect which is different from that of the two-dimensional model. The results have great guiding significance for optimizing and controlling the RF thermal plasma in various application areas.
-
Keywords:
- temperature fields /
- flow fields /
- electromagnetic fields /
- radio frequency thermal plasma /
- three-dimensional numerical simulation
[1] Murphy A B, Uhrlandt D 2018 Plasma Sources Sci. Technol. 27 063001Google Scholar
[2] Mostaghimi J, Boulos M I 2015 Plasma Chem. Plasma Process. 35 421Google Scholar
[3] Yu C F, Zhou X, Wang D Z, Linh N Van, Liu W 2018 Plasma Sci. Technol. 20 14019Google Scholar
[4] Zhu H L, Tong H H, Cheng C M, Liu N 2017 Int. J. Refract. Met. Hard Mater. 66 76Google Scholar
[5] Li J L, Hu R J, Qu H, Su Y, Wang N, Su H Q, Gu X J 2019 Appl. Catal. B 249 63Google Scholar
[6] Oh J W, Na H, Cho Y S, Choi H 2018 Nanoscale Res. Lett. 13 1Google Scholar
[7] Hou H D, Veilleux J, Gitzhofer F, Wang Q S 2020 Surf. Coat. Technol. 393 125803Google Scholar
[8] Kulacki F A 2017 Handbook of Thermal Science and Engineering (Berlin: Springer) pp2923−3005
[9] Altenberend J, Chichignoud G, Delannoy Y 2012 Plasma Sources Sci. Technol. 21 045011Google Scholar
[10] Razzak M A, Kondo K, Uesugi Y, Ohno N, Takamura S 2004 J. Appl. Phys. 95 427Google Scholar
[11] 朱海龙 2014 博士学位论文(成都: 核工业西南物理研究院)
Zhu H L 2014 Ph. D. Dissertation (Chengdu: Southwestern Institute of Physics) (in Chinese)
[12] Xue S W, Proulx P, Boulos M I 2001 J. Phys. D: Appl. Phys. 34 1897Google Scholar
[13] Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 27 55Google Scholar
[14] Watanabe T, Atsuchi N, Shigeta M 2007 Thin Solid Films 515 4209Google Scholar
[15] Tanaka Y 2004 J. Phys. D: Appl. Phys. 37 1190Google Scholar
[16] Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 25 271Google Scholar
[17] Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 25 279Google Scholar
[18] Miller R C, Ayen R J 1969 J. Appl. Chem. 40 5260
[19] ANSYS FLUENT 15 Documentation, Theory Guide 2013 (Canonsburg, PA: ANSYS. Inc.)
[20] Boulos M I, Fauchais P, Pfender E 1994 Thermal Plasmas Fundamentals and Applications (Vol. 1) (New York: Plenum Press) p162
[21] Boulos M I 1985 Pure Appl. Chem. 57 1321Google Scholar
[22] Chen L J, Chen W B, Liu C D, Tong H H, Zhao Q 2019 Plasma Sci. Technol. 21 074006Google Scholar
[23] Punjabi S B, Das T K, Joshi N K, Mangalvedekar H A, Lande B K, Das A K 2010 J. Phys. Conf. Ser. 208 012048Google Scholar
[24] Bernardi D, Colombo V, Ghedini E, Mentrelli A 2005 Pure Appl. Chem. 77 359Google Scholar
[25] 陈熙 2009 热等离子体传热与流动 (北京: 科学出版社) 第28页
Chen X 2009 Heat Transfer and Flow of Thermal Plasma (Beijing: Science Press) p28 (in Chinese)
[26] Schreuders C 2006 Ph. D. Dissertation (Limoges: University of limoges)
[27] Raizer Y P 1987 Gas Discharge Physics (Berlin: Springer-Verlag) p14
[28] Boulos M I 1991 IEEE Trans. Plasma Sci. 19 1078Google Scholar
[29] Kong P C, Lau Y C 1990 Pure Appl. Chem. 62 1809Google Scholar
[30] Mauer G, Vaβen R, Stöver D, Kirner S, Marqués J L, Zimmermann S, Forster G, Schein J 2011 J. Therm. Spray Technol. 20 3Google Scholar
[31] Yu M H, Yamada K, Takahashi Y, Liu K, Zhao T 2016 Phys. Plasmas 23 123523Google Scholar
-
表 1 等离子体炬及腔室几何尺寸表
Table 1. Dimensions of the plasma system sketched in Fig. 1
参数名称 数值 陶瓷约束管内半径/外半径/长度/mm 25/29.5/252 送气管内半径/外半径/长度/mm 15.5/19/120 送料枪内半径/外半径/长度/mm 1.5/4.5/186 线圈半径/轴向节距/mm 37/15 线圈螺线管半径/mm 5 线圈匝数 5 -
[1] Murphy A B, Uhrlandt D 2018 Plasma Sources Sci. Technol. 27 063001Google Scholar
[2] Mostaghimi J, Boulos M I 2015 Plasma Chem. Plasma Process. 35 421Google Scholar
[3] Yu C F, Zhou X, Wang D Z, Linh N Van, Liu W 2018 Plasma Sci. Technol. 20 14019Google Scholar
[4] Zhu H L, Tong H H, Cheng C M, Liu N 2017 Int. J. Refract. Met. Hard Mater. 66 76Google Scholar
[5] Li J L, Hu R J, Qu H, Su Y, Wang N, Su H Q, Gu X J 2019 Appl. Catal. B 249 63Google Scholar
[6] Oh J W, Na H, Cho Y S, Choi H 2018 Nanoscale Res. Lett. 13 1Google Scholar
[7] Hou H D, Veilleux J, Gitzhofer F, Wang Q S 2020 Surf. Coat. Technol. 393 125803Google Scholar
[8] Kulacki F A 2017 Handbook of Thermal Science and Engineering (Berlin: Springer) pp2923−3005
[9] Altenberend J, Chichignoud G, Delannoy Y 2012 Plasma Sources Sci. Technol. 21 045011Google Scholar
[10] Razzak M A, Kondo K, Uesugi Y, Ohno N, Takamura S 2004 J. Appl. Phys. 95 427Google Scholar
[11] 朱海龙 2014 博士学位论文(成都: 核工业西南物理研究院)
Zhu H L 2014 Ph. D. Dissertation (Chengdu: Southwestern Institute of Physics) (in Chinese)
[12] Xue S W, Proulx P, Boulos M I 2001 J. Phys. D: Appl. Phys. 34 1897Google Scholar
[13] Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 27 55Google Scholar
[14] Watanabe T, Atsuchi N, Shigeta M 2007 Thin Solid Films 515 4209Google Scholar
[15] Tanaka Y 2004 J. Phys. D: Appl. Phys. 37 1190Google Scholar
[16] Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 25 271Google Scholar
[17] Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 25 279Google Scholar
[18] Miller R C, Ayen R J 1969 J. Appl. Chem. 40 5260
[19] ANSYS FLUENT 15 Documentation, Theory Guide 2013 (Canonsburg, PA: ANSYS. Inc.)
[20] Boulos M I, Fauchais P, Pfender E 1994 Thermal Plasmas Fundamentals and Applications (Vol. 1) (New York: Plenum Press) p162
[21] Boulos M I 1985 Pure Appl. Chem. 57 1321Google Scholar
[22] Chen L J, Chen W B, Liu C D, Tong H H, Zhao Q 2019 Plasma Sci. Technol. 21 074006Google Scholar
[23] Punjabi S B, Das T K, Joshi N K, Mangalvedekar H A, Lande B K, Das A K 2010 J. Phys. Conf. Ser. 208 012048Google Scholar
[24] Bernardi D, Colombo V, Ghedini E, Mentrelli A 2005 Pure Appl. Chem. 77 359Google Scholar
[25] 陈熙 2009 热等离子体传热与流动 (北京: 科学出版社) 第28页
Chen X 2009 Heat Transfer and Flow of Thermal Plasma (Beijing: Science Press) p28 (in Chinese)
[26] Schreuders C 2006 Ph. D. Dissertation (Limoges: University of limoges)
[27] Raizer Y P 1987 Gas Discharge Physics (Berlin: Springer-Verlag) p14
[28] Boulos M I 1991 IEEE Trans. Plasma Sci. 19 1078Google Scholar
[29] Kong P C, Lau Y C 1990 Pure Appl. Chem. 62 1809Google Scholar
[30] Mauer G, Vaβen R, Stöver D, Kirner S, Marqués J L, Zimmermann S, Forster G, Schein J 2011 J. Therm. Spray Technol. 20 3Google Scholar
[31] Yu M H, Yamada K, Takahashi Y, Liu K, Zhao T 2016 Phys. Plasmas 23 123523Google Scholar
Catalog
Metrics
- Abstract views: 5663
- PDF Downloads: 149
- Cited By: 0