-
Laser fusion research needs much more high-time-resolved diagnostic technologies to study the dynamic process in laser plasma. We develop a special method and setup a device to measure the electromagnetic field in the plasma by using a single electron bunch. The measurement covers the whole-time window of the plasma process driven by a 3.6 ns laser pulse. An electron source can generate a single electron bunch with 0–100 keV energy and 10ns bunch length. A laser pulse with 1 J energy and 532 nm wavelength irradiates on the edge of a silver target, the target nearby the irradiated spot is ionized into plasma. At the beginning of plasma generation, the head of the electron beam begins to pass through the plasma. Electromagnetic field in plasma pushes the electrons transversely. A high voltage pulse at a good time is used to deflect the electrons linearly in the transverse direction to avoid overlapping of the different electrons on the scintillator downstream. By analyzing the deflection distances of the different electrons in this single bunch, we succesfully achieve an average electronic field along the trajectory in the plasma in the whole plasma process. The maximum value of this electronic field is
$ 7.74\times {10}^{5}\;\mathrm{V}/\mathrm{m} $ .-
Keywords:
- electron beam /
- laser Plasma /
- electromagnetic field /
- synchronization
[1] Lindl J D, Hammel B A, Logan B G, Meyerhofer D D, Payne S A, Sethian J D 2003 Plasma Phys. Controlled Fusion 45 A217Google Scholar
[2] Edwards C B, Danson C N 2015 High Power Laser Sci. Eng. 3 e4Google Scholar
[3] Zohuri B 2017 Inertial Confinement Fusion Driven Thermonuclear Energy (Albuquerque: Springer International Publishing) pp133−192
[4] Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, Mccrory R L, Mckenty P W, Meyerhofer D D, Myatt J F 2015 Phys. Plasmas 22 139
[5] 王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同 2021 物理学报 70 085205Google Scholar
Wang T Z, Lei H Y, Sun F Z, Wang D, Liao G Q, Li Y T 2021 Acta Phys. Sin. 70 085205Google Scholar
[6] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林 景全 2020 物理学报 69 057401Google Scholar
[7] Liu L B, Deng H X, Zu X T Yuan X D Zheng W G 2020 Chin. Phys. B 29 507
[8] 杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平 2019 物理学报 68 185205Google Scholar
Du B, Cai H B, Zhang W S, Chen J, Zou S Y, Zhu S P 2019 Acta Phys. Sin. 68 185205Google Scholar
[9] Eliezer S 2010 45 181
[10] Li C K, Seguin F H, Frenje J A, Rosenberg M J, Knauer J 2009 Phys. Rev. Lett. 102(20)
[11] Li C K, Zylstra A B, Frenje J A, Séguin F H, Sinenian N, Petrasso R D, Amendt P A, Bionta R, Friedrich S, Collins G W 2013 New J. Phys. 15 025040Google Scholar
[12] Chen Y, Zhang W, Bao J, Lin Z, Dong C, Cao J 2020 Chin. Phys. Lett. 37 095201Google Scholar
[13] 曹柱荣, 张海鹰, 董建军, 袁铮, 刘慎业, 江少恩, 丁永坤 2011 物理学报 60 045212Google Scholar
Cao Z R, Zhang H Y, Dong J J, Yuan Z, Miao W Y, Liu S Y, Jiang S E, Ding Y K 2011 Acta Phys. Sin. 60 045212Google Scholar
[14] Glenzer S H, Lee H J, Davis P, Doppner T, Falcone R W, Fortmann C, Hanmmel B A, Kritcher A L, Landen O L, Lee R W, Munro D H, Redmer R 2010 High Energy Density Phys. 6 1Google Scholar
[15] Fahad M, Ali S, Iqbal Y 2019 Plasma Sci. Technol. 21 2058
[16] Azechi H, Shiraga H, Miyanaga N, Nishimura H 1997 Fusion Eng. Des. 34−35 37
[17] Borghesi M 2002 Phys. Plasma 9 2214Google Scholar
[18] Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J 2006 Phys. Rev. Lett. 97 135003Google Scholar
[19] Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301Google Scholar
[20] Li C K, Seguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001Google Scholar
[21] Patel P K, Mackinnon A J, Key M H, Cowan T E, Stephens R 2003 Phys. Rev. Lett. 91 125004Google Scholar
[22] 马文君, 刘志鹏, 王鹏业, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar
Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar
[23] Zhu P, Zhang Z, Chen L, Zheng J, Li R, Wang W, Li J, Wang X, Cao J, Qian D 2010 Appl. Phys. Lett. 97 155
[24] Chen L, Li R, Chen J, Zhu P, Liu F, Cao J, Sheng Z, Zhang J 2016 Proc. Natl. Acad. Sci. U.S.A. 112 47
[25] Du B, Cai H B, Zhang W S, Wang X F, Zhu S P 2021 Matter Radiat. Extrem. 6 035903Google Scholar
-
-
[1] Lindl J D, Hammel B A, Logan B G, Meyerhofer D D, Payne S A, Sethian J D 2003 Plasma Phys. Controlled Fusion 45 A217Google Scholar
[2] Edwards C B, Danson C N 2015 High Power Laser Sci. Eng. 3 e4Google Scholar
[3] Zohuri B 2017 Inertial Confinement Fusion Driven Thermonuclear Energy (Albuquerque: Springer International Publishing) pp133−192
[4] Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, Mccrory R L, Mckenty P W, Meyerhofer D D, Myatt J F 2015 Phys. Plasmas 22 139
[5] 王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同 2021 物理学报 70 085205Google Scholar
Wang T Z, Lei H Y, Sun F Z, Wang D, Liao G Q, Li Y T 2021 Acta Phys. Sin. 70 085205Google Scholar
[6] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林 景全 2020 物理学报 69 057401Google Scholar
[7] Liu L B, Deng H X, Zu X T Yuan X D Zheng W G 2020 Chin. Phys. B 29 507
[8] 杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平 2019 物理学报 68 185205Google Scholar
Du B, Cai H B, Zhang W S, Chen J, Zou S Y, Zhu S P 2019 Acta Phys. Sin. 68 185205Google Scholar
[9] Eliezer S 2010 45 181
[10] Li C K, Seguin F H, Frenje J A, Rosenberg M J, Knauer J 2009 Phys. Rev. Lett. 102(20)
[11] Li C K, Zylstra A B, Frenje J A, Séguin F H, Sinenian N, Petrasso R D, Amendt P A, Bionta R, Friedrich S, Collins G W 2013 New J. Phys. 15 025040Google Scholar
[12] Chen Y, Zhang W, Bao J, Lin Z, Dong C, Cao J 2020 Chin. Phys. Lett. 37 095201Google Scholar
[13] 曹柱荣, 张海鹰, 董建军, 袁铮, 刘慎业, 江少恩, 丁永坤 2011 物理学报 60 045212Google Scholar
Cao Z R, Zhang H Y, Dong J J, Yuan Z, Miao W Y, Liu S Y, Jiang S E, Ding Y K 2011 Acta Phys. Sin. 60 045212Google Scholar
[14] Glenzer S H, Lee H J, Davis P, Doppner T, Falcone R W, Fortmann C, Hanmmel B A, Kritcher A L, Landen O L, Lee R W, Munro D H, Redmer R 2010 High Energy Density Phys. 6 1Google Scholar
[15] Fahad M, Ali S, Iqbal Y 2019 Plasma Sci. Technol. 21 2058
[16] Azechi H, Shiraga H, Miyanaga N, Nishimura H 1997 Fusion Eng. Des. 34−35 37
[17] Borghesi M 2002 Phys. Plasma 9 2214Google Scholar
[18] Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J 2006 Phys. Rev. Lett. 97 135003Google Scholar
[19] Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301Google Scholar
[20] Li C K, Seguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001Google Scholar
[21] Patel P K, Mackinnon A J, Key M H, Cowan T E, Stephens R 2003 Phys. Rev. Lett. 91 125004Google Scholar
[22] 马文君, 刘志鹏, 王鹏业, 赵家瑞, 颜学庆 2021 物理学报 70 084102Google Scholar
Ma W J, Liu Z P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70 084102Google Scholar
[23] Zhu P, Zhang Z, Chen L, Zheng J, Li R, Wang W, Li J, Wang X, Cao J, Qian D 2010 Appl. Phys. Lett. 97 155
[24] Chen L, Li R, Chen J, Zhu P, Liu F, Cao J, Sheng Z, Zhang J 2016 Proc. Natl. Acad. Sci. U.S.A. 112 47
[25] Du B, Cai H B, Zhang W S, Wang X F, Zhu S P 2021 Matter Radiat. Extrem. 6 035903Google Scholar
Catalog
Metrics
- Abstract views: 4116
- PDF Downloads: 61
- Cited By: 0