Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-sensitivity hydrophone with two-dimensional acoustic black hole structure

ZHU Hao LI Junbao GE Xiaohui LI Depeng

Citation:

High-sensitivity hydrophone with two-dimensional acoustic black hole structure

ZHU Hao, LI Junbao, GE Xiaohui, LI Depeng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Acoustic black hole (ABH) structures are renowned for their unique wave-focusing ability and have been widely utilized in the fields of acoustics and vibration. Based on this property, a novel high-sensitivity hydrophone design incorporating a two-dimensional (2D) ABH structure is proposed in this work. According to the principles of geometrical acoustics, the wave-converging behavior of bending waves in ABH structures is compared to the bending of acoustic ray in underwater acoustics. A simplified theoretical model describing the relationship between the bending wave trajectory and the wave speed gradient in polar coordinates is established for two-dimensional (2D) ABH configurations and verified through numerical simulations. Based on this mechanism, a 2D ABH hydrophone is developed by integrating the ABH structure into bending-plate hydrophone, enabling vibration energy concentration and significantly enhancing sensitivity. The comparative studies of hydrophones using uniform-thickness plates and linearly tapered thickness plates as receiving surfaces confirm the superior performance of the ABH hydrophone in a frequency range of 1.7–5.8 kHz. To address the significant undulations observed in the sensitivity response, which is attributed to vibration superposition, a liquid cavity of specific length is introduced. This leads to the development of an ABH-Helmholtz-coupled hydrophone (ABHH hydrophone), wherein the first two bending modes of the ABH structure are coupled with the resonant modes of a single-ended open liquid cavity, resulting in broadband reception capability. The prototypes of both hydrophone designs are fabricated and experimentally tested in an anechoic water tank. The results show that both devices achieve peak receiving sensitivities exceeding –169 dB. Notably, the ABHH hydrophone maintains sensitivity fluctuations within 8 dB in a frequency band of 2.6–5.3 kHz. This study confirms that 2D ABH structures can effectively improve hydrophone sensitivity through bending wave convergence, and can achieve broadband acoustic detection when the structure is coupled with liquid cavity resonators. These findings lay a solid foundation for the application of ABH structures in the design of underwater acoustic transducer.
  • 图 1  (a) 厚度呈幂律形式变化的梁横截面; (b) 二维ABH结构

    Figure 1.  (a) Cross-section of a beam with power-law thickness variation; (b) 2D ABH structure.

    图 2  极坐标系中弯曲波轨迹微元几何关系

    Figure 2.  Geometric relationship of an infinitesimal element along the bending wave trajectory in the polar coordinate system.

    图 3  (a) 嵌入二维ABH凹坑的薄板; (b) 正弦激励信号

    Figure 3.  (a) Thin plate embedded with a 2D ABH pit; (b) sinusoidal excitation signal.

    图 4  1—7 ms时刻两种板的位移响应 (a)均匀板; (b) 嵌入二维ABH凹坑的薄板

    Figure 4.  Displacement responses of two types of plates at 1–7 ms: (a) Uniform plate; (b) thin plate embedded with a 2D ABH pit.

    图 5  (a) 二维ABH水听器结构剖面图; (b) ABH板的一维截面

    Figure 5.  (a) Cross-sectional view of the 2D ABH hydrophone structure; (b) one-dimensional profile of the ABH plate.

    图 6  ABH水听器的有限元模型 (a) 整体图; (b) 局部图

    Figure 6.  Finite element model of the ABH hydrophone: (a) General view; (b) enlarged view.

    图 7  4种厚度板的一维截面 (a) 均匀厚度$ {h_1} $; (b) 均匀厚度$ {h_2} $; (c) 线性变厚度; (d) ABH

    Figure 7.  One-dimensional profiles of plates with four thickness types: (a) Uniform thickness $ {h_1} $; (b) uniform thickness $ {h_2} $; (c) linear thickness variation; (d) ABH.

    图 8  4种厚度形式的板作为声波接收面的水听器接收电压灵敏度级曲线

    Figure 8.  Receiving voltage sensitivity level curves for hydrophones with plates of four thickness types as the acoustic wave receiving surface.

    图 9  4种厚度形式的板作为声波接收面的水听器接收指向性 (a) 2.95 kHz; (b) 5.25 kHz

    Figure 9.  Receiving directivity of hydrophones with plates of four thickness types as the acoustic wave receiving surface: (a) 2.95 kHz; (b) 5.25 kHz.

    图 10  ABH水听器位移场和稳态声压场的整体图和局部放大图 (a) 2.95 kHz; (b) 5.25 kHz

    Figure 10.  General and enlarged views of displacement fields and steady-state sound pressure fields for the ABH hydrophone: (a) 2.95 kHz; (b) 5.25 kHz.

    图 11  ABH水听器衍射常数

    Figure 11.  Diffraction constant of the ABH hydrophone.

    图 12  (a) 面激励等效为无数个同心圆周上线激励叠加; (b) 圆周上线激励近似为无数个线段上线激励叠加

    Figure 12.  (a) Equivalence of a surface excitation to the superposition of an infinite number of line excitations on concentric circumferences; (b) approximation of a line excitation on a circumference as the superposition of an infinite number of line excitations on line segments.

    图 13  不同位置不同频率激励信号下的位移响应 (a) 圆周1处施加5.86 kHz信号激励; (b) 圆周2处施加5.86 kHz信号激励; (c) 圆周1和2处共同施加5.86 kHz信号激励; (d) 圆周1处施加6.53 kHz信号激励; (e) 圆周2处施加6.53 kHz信号激励; (f) 圆周1和2处共同施加6.53 kHz信号激励

    Figure 13.  Displacement responses under excitation at different positions and frequencies: (a) Excitation on circumference 1 with a 5.86 kHz signal; (b) excitation on circumference 2 with a 5.86 kHz signal; (c) simultaneous excitation on circumferences 1 and 2 with a 5.86 kHz signal; (d) excitation on circumference 1 with a 6.53 kHz signal; (e) excitation on circumference 2 with a 6.53 kHz signal; (f) simultaneous excitation on circumferences 1 and 2 with a 6.53 kHz signal.

    图 14  ABHH水听器结构剖面图

    Figure 14.  Cross-sectional view of the ABHH hydrophone structure.

    图 15  ABH水听器和ABHH水听器仿真接收电压灵敏度级曲线对比

    Figure 15.  Comparison of simulated receiving voltage sensitivity level curves between the ABH hydrophone and the ABHH hydrophone.

    图 16  ABHH水听器改变液腔腔体长度接收电压灵敏度级曲线对比

    Figure 16.  Comparison of receiving voltage sensitivity level curves for the ABHH hydrophone with variation in the liquid cavity length.

    图 17  ABHH水听器仿真指向性图

    Figure 17.  Simulated directivity pattern of the ABHH hydrophone.

    图 18  ABHH水听器位移场和稳态声压场的整体图和局部放大图 (a) 2.75 kHz; (b) 3.85 kHz; (c) 5.3 kHz

    Figure 18.  General and enlarged views of displacement fields and steady-state sound pressure fields for the ABHH hydrophone: (a) 2.75 kHz; (b) 3.85 kHz; (c) 5.3 kHz.

    图 19  ABHH水听器衍射常数

    Figure 19.  Diffraction constant of the ABHH hydrophone.

    图 20  水听器零件及水密灌封后样机 (a) 水听器金属零件; (b) PZT-5 A压电陶瓷; (c) ABH水听器样机; (d) ABHH水听器样机

    Figure 20.  Hydrophone components and prototypes after waterproof potting: (a) Metal components; (b) PZT-5 A piezoelectric ceramic; (c) ABH hydrophone prototype; (d) ABHH hydrophone prototype.

    图 21  (a) 水听器接收灵敏度和指向性的实验测量装置; (b) ABH水听器入水姿态; (c) ABHH水听器入水姿态

    Figure 21.  (a) Experimental setup for measuring hydrophone receiving sensitivity using the comparative method; (b) immersion posture of the ABH hydrophone; (c) immersion posture of the ABHH hydrophone.

    图 22  ABH水听器和ABHH水听器实测接收电压灵敏度级曲线

    Figure 22.  Measured receiving voltage sensitivity level curves for the ABH hydrophone and ABHH hydrophone.

    图 23  ABH水听器和ABHH水听器实测指向性图

    Figure 23.  Measured directivity patterns of the ABH hydrophone and ABHH hydrophone.

    表 1  4种厚度形式的板作为声波接收面的水听器性能对比

    Table 1.  Performance comparison of hydrophones with plates of four thickness types as the acoustic wave receiving surface.

    水听器接收面模型 接收灵敏度/dB 指向性–3 dB开角/(°)
    最大值 最大起伏 2.95 kHz 5.25 kHz
    均匀板$ h = {h_1} $ –178.7 21.35 121.6 91.8
    均匀板$ h = {h_2} $ –176.3 33.2 144.8 139.2
    线性变厚度板 –180.6 23.1 153.7 116.6
    ABH板 –167.3 20.7 156.0 99.0
    DownLoad: CSV

    表 2  ABH水听器的仿真与实测性能对比

    Table 2.  Comparison of simulated and measured performance for the ABH hydrophone.

    模态
    阶数
    仿真 实测
    频率
    /kHz
    灵敏度
    /dB
    –3 dB开
    角/(°)
    频率
    /kHz
    灵敏度
    /dB
    –3 dB开
    角/(°)
    1阶 2.95 –167.3 156 2.9 –168.8 120
    2阶 5.25 –168.5 99 5.0 –168.6 85
    DownLoad: CSV

    表 3  ABHH水听器的仿真与实测性能对比

    Table 3.  Comparison of simulated and measured performance for the ABHH hydrophone.

    模态
    阶数
    仿真 实测
    频率
    /kHz
    灵敏度
    /dB
    –3 dB开
    角/(°)
    频率
    /kHz
    灵敏度
    /dB
    –3 dB开
    角/(°)
    1阶 2.75 –167.0 160 2.8 –170.4 135
    2阶 3.85 –168.4 96 3.6 –173.9 95
    3阶 5.30 –167.8 64 5.0 –169.0 69
    DownLoad: CSV
  • [1]

    Guang D, Sun X Y, Shi J H, Wu X Q, Zhang G S, Zuo C, Zhu P C, Yu B L 2024 Opt. Express 32 47721Google Scholar

    [2]

    杨悦 2022 博士学位论文 (长春: 吉林大学)

    Yang Y 2022 Ph. D. Dissertation (Changchun: Jilin University

    [3]

    周利生, 许欣然 2021 声学学报 46 1250

    Zhou L S, Xu X R 2021 Acta Acust. 46 1250

    [4]

    涂馨予, 李俊宝, 刘晓迪, 申健康 2021 压电与声光 43 449Google Scholar

    Tu X Y, Li J B, Liu X D, Shen J K 2021 Piezoelectr. Acoustoopt. 43 449Google Scholar

    [5]

    王宏伟, 惠辉, 荣畋 2022 声学学报 47 364

    Wang H W, Hui H, Rong T 2022 Acta Acust. 47 364

    [6]

    徐言哲 2020 硕士学位论文 (武汉: 华中科技大学)

    Xu Y Z 2020 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [7]

    许延峰, 周天放, 蓝宇 2020 应用科技 47 99

    Xu Y F, Zhou T F, Lan Y 2020 Appl. Sci. Technol. 47 99

    [8]

    Kim D, Roh Y 2023 Sensors 23 9086

    [9]

    李世平, 莫喜平, 潘耀宗, 张运强, 崔斌 2017 声学学报 42 729

    Li S P, Mo X P, Pan Y Z, Zhang Y Q, Cui B 2017 Acta Acust. 42 729

    [10]

    李世平, 莫喜平, 张运强, 崔斌 2017 应用声学 36 54

    Li S P, Mo X P, Zhang Y Q, Cui B 2017 Appl. Acoust. 36 54

    [11]

    Mironov M A 1988 Sov. Phys. Acoust. 34 318

    [12]

    Krylov V V 1989 Sov. Phys. Acoust. 35 176

    [13]

    Huang W, Ji H L, Qiu J H, Cheng L 2018 J. Sound Vib. 417 216Google Scholar

    [14]

    Tang L L, Cheng L, Ji H L, Qiu J H 2016 J. Sound Vib. 374 172Google Scholar

    [15]

    Deng J, Gao N S, Chen X, Han B, Ji H L 2023 Mech. Syst. Signal Proc. 191 110182Google Scholar

    [16]

    Zhao L X, Conlon S C, Semperlotti F 2014 Smart Mater. Struct. 23 065021Google Scholar

    [17]

    宋婷婷, 郑玲, 邓杰 2022 振动与冲击 41 186

    Song T T, Zheng L, Deng J 2022 J. Vib. Shock 41 186

    [18]

    刘洋, 陈诚, 林书玉 2024 物理学报 73 148

    Liu Y, Chen C, Lin S Y 2024 Acta Phys. Sin. 73 148

    [19]

    Chen C, Tang Y F, Ren W B, Wang Y, Guo J Z, Lin S Y 2024 Ultrasonics 143 107417Google Scholar

    [20]

    王怡, 陈诚, 林书玉 2025 物理学报 74 044303Google Scholar

    Wang Y, Chen C, Lin S Y 2025 Acta Phys. Sin. 74 044303Google Scholar

    [21]

    黄薇 2019 博士学位论文 (南京: 南京航空航天大学)

    Huang W 2019 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics

    [22]

    刘伯胜, 雷家煜 2010 水声学原理 (第2版) (哈尔滨: 哈尔滨工程大学出版社) 第76–82页

    Liu B S, Lei J Y 2010 Principles of Underwater Acoustics (2nd ed. ) (Harbin: Harbin Engineering University Press) pp76–82

    [23]

    杨荣耀, 吴彤, 崔斌 2022 中国声学学会水声学分会2021—2022年学术会议论文集 中国青岛, 2022年8月15日 第393页

    Yang R Y, Wu T, Cui B 2022 Proceedings of the Academic Conference of Underwater Acoustic Branch of Acoustics Society of China in 2021—2022 Qingdao, China, August 15, 2022 p393

    [24]

    Butler J L, Sherman C H 2016 Transducers and Arrays for Underwater Sound (2nd ed. ) (Cham: Springer International Publishing) p325

    [25]

    桑永杰, 蓝宇, 丁玥文 2016 物理学报 65 024301Google Scholar

    Sang Y J, Lan Y, Ding Y W 2016 Acta Phys. Sin. 65 024301Google Scholar

    [26]

    滕舵, 杨虎 2020 水声换能器基础 (第2版) (西安: 西北工业大学出版社) 第220–224页

    Teng D, Yang H 2020 Fundamentals of Hydroacoustic Transducers (2nd ed. ) (Xi'an: Northwestern Polytechnical University Press) pp220–224

  • [1] ZHANG Xiuzhen, MO Xiping, CHAI Yong, PAN Rui, TIAN Zhifeng. Low-frequency directional flextensional transducer with concave-convex beam. Acta Physica Sinica, doi: 10.7498/aps.74.20250161
    [2] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, doi: 10.7498/aps.71.20220722
    [3] Li Qin-Ran, Sun Chao, Xie Lei. Modal intensity fluctuation during dynamic propagation of internal solitary waves in shallow water. Acta Physica Sinica, doi: 10.7498/aps.71.20211132
    [4] Gao Fei, Xu Fang-Hua, Li Zheng-Lin, Qin Ji-Xing. Mode coupling and intensity fluctuation of sound propagation over continental slope in presence of internal waves. Acta Physica Sinica, doi: 10.7498/aps.71.20220634
    [5] Duan Jun, Tang Ke, Qin Min, Wang Dan, Wang Mu-Di, Fang Wu, Meng Fan-Hao, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Broadband cavity enhanced absorption spectroscopy for measuring atmospheric NO3 radical. Acta Physica Sinica, doi: 10.7498/aps.70.20201066
    [6] Research on the modal intensity fluctuation during the dynamic propagation of internal solitary waves in the shallow water. Acta Physica Sinica, doi: 10.7498/aps.70.20211132
    [7] Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan. Structure optimization of carbon nanotube ionization sensor based on fluid model. Acta Physica Sinica, doi: 10.7498/aps.70.20201828
    [8] Zhou Zi-Xin, Huang Yin-Bo, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song. Design and experiment of re-injection off-axis integrated cavity output spectroscopy technology in 2 μm band. Acta Physica Sinica, doi: 10.7498/aps.68.20190061
    [9] Yan De-Xian, Li Jiu-Sheng, Wang Yi. High sensitivity terahertz refractive index sensor based on sunflower-shaped circular photonic crystal. Acta Physica Sinica, doi: 10.7498/aps.68.20191024
    [10] Ma Yu-Fei, He Ying, Yu Xin, Yu Guang, Zhang Jing-Bo, Sun Rui. Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.65.060701
    [11] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, doi: 10.7498/aps.64.228501
    [12] Li Ke-Wu, Wang Zhi-Bin, Chen You-Hua, Yang Chang-Qing, Zhang Rui. High sensitive measurement of optical rotation based on photo-elastic modulation. Acta Physica Sinica, doi: 10.7498/aps.64.184206
    [13] An Ping, Guo Hao, Chen Meng, Zhao Miao-Miao, Yang Jiang-Tao, Liu Jun, Xue Chen-Yang, Tang Jun. Preparation and force-sensitive properties of carbon nanotube/polydimethylsiloxane composites films. Acta Physica Sinica, doi: 10.7498/aps.63.237306
    [14] Tian He, Sun Wei-Min, Zhang Yun-Dong. Phase sensitivity of rotation sensing in coupled resonator waveguides. Acta Physica Sinica, doi: 10.7498/aps.62.194204
    [15] Yang Shen, Rong Qiang-Zhou, Sun Hao, Zhang Jing, Liang Lei, Xu Qin-Fang, Zhan Su-Chang, Du Yan-Ying, Feng Ding-Yi, Qiao Xue-Guang, Hu Man-Li. High temperature probe sensor with high sensitivity based on Michelson interferometer. Acta Physica Sinica, doi: 10.7498/aps.62.084218
    [16] Zhang Zhe, Liu Qian, Qi Zhi-Mei. Study of Au-Ag alloy film based infrared surface plasmon resonance sensors. Acta Physica Sinica, doi: 10.7498/aps.62.060703
    [17] Lou Shu-Qin, Wang Xin, Yin Guo-Lu, Han Bo-Lin. Curvature sensor based on side-leakage photonic crystal fiber with high sensitivity and broad linear measurement range. Acta Physica Sinica, doi: 10.7498/aps.62.194209
    [18] Lu Dan-Feng, Qi Zhi-Mei. Characterization and chemical/biosensing application of a high-sensitivity integrated optical polarimetric interferometer. Acta Physica Sinica, doi: 10.7498/aps.61.114212
    [19] Wang Ze-Feng, Hu Yong-Ming, Meng Zhou, Luo Hong, Ni Ming. Frequency response of fourth-order acoustic low-pass filtering fiber-optic hydrophones. Acta Physica Sinica, doi: 10.7498/aps.58.7034
    [20] Zhu Tao, Rao Yun-Jiang, Mo Qiu-Ju. A high sensitivity fiber-optic torsion sensor based on a novel ultra long-period fiber grating. Acta Physica Sinica, doi: 10.7498/aps.55.249
Metrics
  • Abstract views:  511
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  09 June 2025
  • Accepted Date:  27 July 2025
  • Available Online:  25 August 2025
  • /

    返回文章
    返回