-
The seamounts usually have important effects on sound propagation in deep water. A sound propagation experiment was conducted in the South China Sea in 2016. One of the experimental goals is to investigate the three-dimensional(3D) effects of seamounts on sound propagation. Phenomena about horizontal refraction of acoustic waves are observed in different propagation tracks which go through the seamount along different directions when the source depth is 200 m. Ray methods (BELLHOP N×2D and 3D models) which can calculate sound field efficiently and show clear physical images, are used to analyze and explain the causes of the phenomena. The experimental and numerical results show that the convergent zone structures are destroyed by the direct blockage of seamount due to the multiple reflection of acoustic waves, which leads to the increase of transmission loss (TL), and horizontal-refraction zone with obvious boundaries appears behind the seamount. Some experiment phenomena cannot be explained by BELLHOP N×2D model in which the horizontal refraction effects are not taken into consideration. The experimental sound field structure behind the seamount is obviously different from N×2D model numerical result, i.e.the width of shadow zone based on the experimental data is wider than that calculated by N×2D model, and the width of strong horizontal-refraction zone from the experiment is narrower than the N×2D model result. Moreover, the TLs calculated by N×2D model is about 10 dB less than the experimental result in horizontal refraction zone. After analyzing the difference between experimental data and N×2D model numerical results by BELLHOP 3D model which contains the azimuth-coupling capability, it can be concluded that sound waves reach the receiver through horizontal refraction after the interaction with seamount when the source is located behind the seamount. The eigenrays obtained from 3D model are less than N×2D model numerical result because some of sound beams cannot reach the receiver as a result of the horizontal refraction effects, which leads to the experimental TLs larger than the numerical results calculated by N×2D model. Therefore, 3D effect of seamount has an obvious influence on sound field within a certain angle range behind the seamount, and the investigation of 3D effects of seamounts is meaningful for the sound propagation and target detection in deep water.
-
Keywords:
- deep water /
- seamounts /
- horizontal refraction /
- ray model
[1] Weston D E 1961 Proc. Phys. Soc. London 78 46
[2] Harrison C H 1979 J. Acoust. Soc. Am. 65 56
[3] Harrison C H 1977 J. Acoust. Soc. Am. 62 1382
[4] Buckingham M J 1986 J. Acoust. Soc. Am. 80 265
[5] Munk W H, Zachariasen F 1991 J. Atmos. Oceanic Technol. 8 554
[6] Chapman N R, Ebbeson G R 1983 J. Acoust. Soc. Am. 73 1979
[7] Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology)
[8] Reilly S M, Potty G R, Goodrich M 2016 J. Comput. Acoust. 24 165007
[9] Herman M, Emily C, Edgar A J, Robert A S 1984 J. Acoust. Soc. Am. 75 1478
[10] Megan S B, Benjamin M G, Marcia J I 2015 J. Comput. Acoust. 23 267
[11] Doolittle R D, Tolstoy A, Buckingham M J 1988 J. Acoust. Soc. Am. 83 2117
[12] Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE Seattle–A Global Responsibility: the Global Ocean is an Uncommon Resource Demanding Common Responsibility Seattle USA, September 20-23, 2010 p1
[13] Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52
[14] Qin J X, Katsnelson B G, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese) [秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于 2016 物理学报 65 034301]
[15] Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302
[16] Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]
[17] Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acust. 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425]
[18] Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese) [秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]
[19] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p3
[20] Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349
[21] Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990
-
[1] Weston D E 1961 Proc. Phys. Soc. London 78 46
[2] Harrison C H 1979 J. Acoust. Soc. Am. 65 56
[3] Harrison C H 1977 J. Acoust. Soc. Am. 62 1382
[4] Buckingham M J 1986 J. Acoust. Soc. Am. 80 265
[5] Munk W H, Zachariasen F 1991 J. Atmos. Oceanic Technol. 8 554
[6] Chapman N R, Ebbeson G R 1983 J. Acoust. Soc. Am. 73 1979
[7] Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology)
[8] Reilly S M, Potty G R, Goodrich M 2016 J. Comput. Acoust. 24 165007
[9] Herman M, Emily C, Edgar A J, Robert A S 1984 J. Acoust. Soc. Am. 75 1478
[10] Megan S B, Benjamin M G, Marcia J I 2015 J. Comput. Acoust. 23 267
[11] Doolittle R D, Tolstoy A, Buckingham M J 1988 J. Acoust. Soc. Am. 83 2117
[12] Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE Seattle–A Global Responsibility: the Global Ocean is an Uncommon Resource Demanding Common Responsibility Seattle USA, September 20-23, 2010 p1
[13] Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52
[14] Qin J X, Katsnelson B G, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese) [秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于 2016 物理学报 65 034301]
[15] Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302
[16] Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]
[17] Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acust. 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425]
[18] Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese) [秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]
[19] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p3
[20] Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349
[21] Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990
Catalog
Metrics
- Abstract views: 9175
- PDF Downloads: 188
- Cited By: 0