Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of mixture gas arc of Ar-O2

Wang Xin-Xin Chi Lu-Xin Wu Guang-Feng Li Chun-Tian Fan Ding

Liu Yong, Xu Zhi-Jun, Fan Li-Qun, Yi Wen-Tao, Yan Chun-Yan, Ma Jie, Wang Kun-Peng. Preparation and properties of multi-effect potassium sodium niobate based transparent ferroelectric ceramics. Acta Phys. Sin., 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
Citation:

Numerical simulation of mixture gas arc of Ar-O2

Wang Xin-Xin, Chi Lu-Xin, Wu Guang-Feng, Li Chun-Tian, Fan Ding
PDF
HTML
Get Citation
  • Mixture gas arcs are used extensively in welding manufacturing. A two-dimensional steady mathematical model for Ar-O2 mixture gas arc is developed to understand further the heat and mass transfer of the mixture gas arc. The model is based on the assumption of local thermodynamic equilibrium, and the thermodynamic parameters and transport coefficients are dependent on both the temperature and the oxygen content. In the present model, the diffusion between the argon species and oxygen species is depicted by the approach of the combined diffusion coefficient, i. e. the mixture gas arc is simplified into two different species, and the diffusion between them is formulated by combined ordinary diffusion coefficient and combined temperature diffusion coefficient; the oxygen distribution and its influence on the temperature and flow field of the arc are investigated for two different current conditions. It is shown that the oxygen species presents significant non-uniform distribution for argon gas mixed with 5% oxygen; the oxygen content is higher than that in mixed shielding gas in the regions close to the electrodes and arc axis, while its content is lower than that of the mixed shielding gas in other regions. For high current, oxygen concentrates more to the flat anode, while it concentrates more to tungsten cathode for low current. For both cases, oxygen content is inhomogeneous in the region 0.1 mm above the anode. The 5% oxygen mixed in argon constricts the arc plasma to some extent and thus raises the arc temperature as well as the plasma flow velocity.
      PACS:
      81.40.Pq(Friction, lubrication, and wear)
      68.18.Fg(Liquid thin film structure: measurements and simulations)
      02.70.Ns(Molecular dynamics and particle methods)
      Corresponding author: Wang Xin-Xin, wang@cqut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51705054) and the the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJ1600903, KJ1709197).

    降低各部件间的摩擦是微/纳米电子机械系统成功运行的关键技术. 许多学者通过对部件表面镀以有序超薄分子膜, 例如自组装膜self-assembled monolayers (SAMs)膜、Langmuir-Blodgett (LB)膜等, 来降低部件间的摩擦[1-4]. 直链烷烃膜因其结构简单, 受到了研究者的广泛关注. Mcdermott等[5]对有序烷烃自组装膜的链长效应进行了模拟, 结果表明: 烷烃链长的增加使得膜的内部黏滞性增加, 从而导致更低的摩擦. Booth等[6]研究了单层硫烷自组装膜的滑动, 发现: 当分子中的C原子数大于8时, 摩擦系数保持稳定. 刘蕾等[7]的实验研究表明: 单一自组装膜中, C6H14膜的摩擦最大, 但C10H22, C14H30和C18H38的摩擦力和摩擦系数无明显区别; 二元混合自组装膜的摩擦随着长链分子的链长增加而逐渐减小. 我们的研究也表明: 单一自组装膜的摩擦小于二元混合膜的摩擦[8]. Gosvami等[9]的实验结果表明, 有序分子膜在经过多次滑动后, 膜的有序结构遭到破坏, 摩擦力随着膜内缺陷的增加而急剧增加. 因此, 对有结构缺陷或分子无序分布的润滑膜的摩擦机理的研究就显得非常重要.

    Granick[10]对受约束烷烃薄膜的研究表明: 基板间距较小时, 薄膜黏度增加, 膜内有分层形成. Cui等[11]采用组合原子模型研究了烷烃润滑薄膜滑动过程中的分层行为及分层内的分子取向问题. Vasko等[12]对石墨烯表面的无序烷烃单层膜的实验研究表明混合膜较纯润滑膜的摩擦小. 但是, 由于对受约束混合膜的摩擦性质研究较少, 目前人们还缺少对其摩擦机理的充分解释. 本文利用分子动力学方法, 模拟了受约束纯液体膜(由单一分子组成)和混合膜(由两种分子组成)的滑动过程, 探索了分子链长改变对薄膜结构、基板与液体膜间的相互作用及摩擦性质的影响, 分析了混合液体膜的摩擦机理. 研究结果对进一步加深理解纳米摩擦机理有重要的指导作用.

    本文中所有模型均由两块相同的金[111]基板及其间的液体膜组成, 如图1所示. 每块金基板由2138个金原子按照面心立方结构堆积而成, 晶格参数为4.08 Å, 尺寸为(44.88 × 44.88 × 12.24) Å3. 为更接近实际摩擦工况, 每块金基板分为三层, 分别为: 刚性层(rigid layer)、恒温层(thermostat layer)和自由层(Newton layer) [13]. 初始时, 两块基板间距48.96 Å. 本研究中的液体分子膜共分两类, 第一类为纯液体膜, 它是由单一直链烷烃分子CnH2n + 2(n = 6, 8, 10, 12, 14, 16和18)组成, 共计7种纯液体膜; 第二类为混合液体膜, 是由C6H14和CnH2n + 2 (n = 8, 10, 12, 14, 16和18)按照1∶1的比例混合而成, 共计6种混合膜.

    图 1  液态烷烃C18H38润滑膜模型
    Fig. 1.  Liquid alkane C18H38 lubricant film model

    模拟中, 为了兼顾计算结果的精度及计算的效率, 采用了混合力场: 对有机分子, 采用了全原子OPLS-AA[14-16]力场, 势函数为:

    $\begin{split} U ={}& {k_b}{(r - {r_0})^2} + {k_\theta }{(\theta - {\theta _0})^2} \\ & + \sum\limits_{n = 1}^4 C_n [1 \!+\! \cos (n\phi )] \! +\! 4\varepsilon \Big[\Big(\frac{\sigma }{r}\Big)^{12} - \Big(\frac{\sigma }{r}\Big)^6\Big]\\ & + \frac{{C{q_i}{q_j}}}{{{\varepsilon _r}}} \end{split} $

    其中, 第一、二项为分子内的键伸缩能及角弯曲能; 第三项为二面角作用能, 由于二面角作用能对摩擦的贡献较小[17,18], 本模拟中仅考虑相邻的四个碳原子形成的二面角作用能. 采用Lennard-Jones (L-J)作用势和静电作用势描述有机分子内和有机分子间非键相互作用, 分别对应势函数的第四、五项. 采用 嵌入原子法(EAM)力场描述金原子间相互作用, 参数来自程序自带的力场参数[19]. 采用L-J作用势和静电作用势描述有机分子及金原子间相互作用, 金原子的参数来自文献[20].

    模拟时, 对模型在xy方向施加周期性边界条件, 在Z方向施加有限边界条件. 对刚性层施加刚性约束; 对恒温层部分施加300 K的Langevin热浴, 每50步对恒温层进行温度重置; 采用Velert算法对自由层中的原子运动的牛顿运动方程进行积分, 对整个模型施加微正则(NVE)系综约束[13]. 模拟分为四个步骤: 1)采用共轭梯度方法对模型进行构型优化, 获得最优构型; 2)对恒温层施加热浴, 对系统施加NVE系综约束, 运行10万步; 3)固定下层基板中的刚性层部分, 对上层基板的刚性层施加沿着Z轴负方向的1.0 GPa载荷, 运行40万步; 4)拉动上基板的刚性层以10 m/s的速度沿X轴正负方向运动, 运行60万步. 模拟结果表明, 当上层金基板水平滑动20万步时, 系统达到稳定状态, 为此, 我们抽取最后30万步数据进行分析. 所有模拟的时间步长为2 fs, 非键相互作用的截断距离为10 Å. 本文所有计算工作采用LAMMPS[21]软件完成.

    由于烷烃液体膜的分子呈完全无序分布状态, 其摩擦性质与有序分子膜有较大不同. 从图2(a)中可以看出, 随着滑动距离的增加, 纯C12H26膜(简记C12膜)的摩擦力呈现无规则变化, 有序分子膜在滑动过程中的规律“黏-滑”周期效应在此并未出现. 观察液体膜滑动的动画发现: 液体膜内的分子相互缠杂, 膜的构型在滑动过程中保持稳定, 分子并未发生周期性摆动振荡行为, 这也是“黏-滑”效应消失的主要原因.

    图 2  (a) C12H26液体膜在滑动过程中的摩擦力随滑动距离的变化; (b) 7种液体膜的平均摩擦力和平均摩擦系数
    Fig. 2.  (a) Friction curve of C12H26 liquid film in sliding process with sliding distance; (b) the average friction force and average coefficient of friction (COF) of the seven liquid films

    摩擦力和摩擦系数(COF)作为摩擦性质中的重要参数, 直接体现了润滑物的润滑效果. 从图2(b)可以看出, 当CnH2n+2烷烃中C原子数n < 12时, 摩擦力随着链长的增加逐渐增加; 当n > 8时, 除C16膜外, 其他烷烃液体膜的摩擦力随链长的增加变化较小, 这表明C原子数n > 8时, 分子链长对液体膜的摩擦性质影响减小, 不同分子链长液体膜的摩擦性质较为稳定, 这与极性无序硫烷的结论一致[6]. 同时, 从图2(b)中可看出, 与有序分子膜的摩擦系数随链长的增加而减小的规律不同[17], 烷烃液体膜的摩擦系数变化趋势与摩擦力变化趋势一致. 这主要是由于有序分子膜的稳定性随着膜内分子链长的增加而增强, 而烷烃液体膜在滑动过程中, 在内部形成多层分层, 且各分层结构较为稳定所致.

    实验[7,22,23]及模拟[8]均表明, 在有序分子膜中加入的短链分子会增强膜的摩擦, 但实验[12]发现加入短链分子的无序烷烃膜的摩擦降低. 为探讨无序混合润滑膜的摩擦机理, 我们设计的6种混合液体分子膜进行了对比研究, 每种混合膜由C6H14和CnH2n + 2按1∶1比例混合而成(简记为C6Cn膜). 从图3中可看出, C6C12膜的摩擦力最大, 其摩擦系数较纯C12液体膜的摩擦力大56%左右, 而C6C8, C6C10和C6C16混合膜的摩擦力及摩擦系数分别较纯C8, C10和C16膜的摩擦系数略小. 混合膜C6C14和C6C18的摩擦力分别比纯C14和C18膜的摩擦力增大约15%. 此外, 从图3中也可看出, 当混合膜中长链CnH2n + 2分子中的碳原子大于12时, 摩擦力和摩擦系数变化不大, 摩擦性质较为稳定.

    图 3  六种混合分子膜的平均摩擦力和平均摩擦系数
    Fig. 3.  The average friction force and average COF of the six mixed films

    由于直链烷烃分子为非极性分子, 因此, 基板与液体膜间的非键作用主要为范德瓦耳斯相互作用. 从表1中可看出, 当分子中碳原子数小于14时, 液体膜与基板间相互作用随着分子链长的增加而增强, 其中, C16膜与基板间相互作用较C12, C14及C18膜要小. 结合图2(b)可知, 当碳原子数小于12时, 液体膜与基板间的相互作用在一定程度上增加了摩擦. 当碳原子数大于12时, 液体膜与基板间相互作用对摩擦贡献较小.

    表 1  纯液体膜中上基板与液体膜间相互作用 (kJ/mol)
    Table 1.  Interaction between upper substrate and liquid film (kJ/mol)
    模型 C6 C8 C10 C12 C14 C16 C18
    作用能 2285 2434 2438 2484 2496 2408 2488
    下载: 导出CSV 
    | 显示表格

    当两基板间间距较小时(小于约6个分子层厚)时, 由于基板与液体膜间较强的吸附作用, 导致液体膜的等效黏度比其正常状态时的体相黏度高出4个数量级以上[10,11], 较高的黏度导致层状结构的形成. 层状结构的密度较常态下的密度大, 又称为类固层. 当基板与液体膜间相互作用较弱时, 无分层形成[11]. 从图4(a)中可看出, 纯C12H26液体膜在滑动过程中形成5层明显的类固层, 且各分层间有分子渗入相邻分层之中, 这种分子又称桥接分子, 桥接分子在一定程度上阻碍了两相邻分层的相对滑动, 这也是膜内部黏滞的主要来源. 从图4(b)中可看出, 在滑动过程中, 在C6膜两层基板表面附近各形成两层类固层, 在中间部分的密度较其他层稍小, 由于其分子链长较短, 内部黏滞较其他液体膜小. 纯C12膜和纯C18膜内形成五层明显分层, 且纯C12膜的分层密度比纯C18膜的分层密度要小, 这主要是由于分子链长增加导致分层内分子缠绕得更加紧密. 纯C16膜在上、下基板附近形成一层较为密度较大的分层, 但在这两单层之间无其他明显的分层行为, 且内部密度分布较为均匀, 具有流体特征, 这也是C16膜的摩擦比其他液体膜摩擦高的主要原因.

    图 4  (a)纯C12H26液体膜在滑动过程中的分层结构; (b)四种纯液体膜沿Z方向的密度分布
    Fig. 4.  (a) Layered structure of C12H26 liquid film in sliding process; (b) density distribution along Z direction of four pure liquid films (C6H14, C12H26, C16H34, C18H40).

    表2中可看出, 混合C6C12液体膜与基板间相互作用最强. 结合表1可知, 除十二烷外, 其他烷烃液体膜中加入短链分子后, 液体膜与基板间相互作用略有增减, 但变化不大. 结合图2(b)图3可知, 液体膜与基板间相互作用是摩擦力的来源之一.

    表 2  混合液体膜中上基板与液体膜间相互作用(kJ/mol)
    Table 2.  Interaction between upper substrate and mixed liquid film (kJ/mol).
    模型 C6C8 C6C10 C6C12 C6C14 C6C16 C6C18
    作用能 2396 2396 2893 2438 2400 2505
    下载: 导出CSV 
    | 显示表格

    滑动过程中, 紧邻基板表面形成的分层如图5. 从图5(a)图5(c)中可以看出, C6C8及C6C18混合膜的分层均与基板吸附良好, 且分层内分子大部分完整地分布在分层之内, 且长链分子越长, 分层内的短链分子越少. Cui等[11]的研究也表明, 长链分子倾向于平行基板分布. 从图5(b)中可看出, 其分层并不完整, 有部分区域空心化, 这表明短链分子的加入对十二烷烃影响较大, 使其无法在基板表面形成稳定的类固层(见图6).

    图 5  混合液体膜在上基板表面形成的分层内分子分布图 (a) C6C8; (b) C6C12; (c) C6C18
    Fig. 5.  Distribution of the molecules in the layer formed on the surface of the base: (a) C6C8; (b) C6C12; (c) C6C18.
    图 6  混合膜在滑动过程沿着Z方向密度分布
    Fig. 6.  Distribution of density along Z direction in sliding process of mixed films

    图6中可看出, C6C12混合膜中, 在上、下基板附近并未形成类固层, 膜内无分层行为, 且其膜厚度较其他混合膜的厚度小, 密度也最大, 膜仍为高密度的液体态. C6C8及C6C10混合膜的分布情况与纯C16膜的分层类似, 其他三种混合膜的分层均较为明显, 均形成了多层分层, 且摩擦力及摩擦系数相差较小.

    综合上述分析可得出: 液体膜内由分子紧密缠绕形成的类固层与自组装单层膜功能上相同, 基板附近的连续多层分层结构类似于多层自组装单层膜的叠加, 这是薄膜摩擦力降低的主要原因. 纯液体膜中, 分层内分子缠绕度随着链长的增加而增加, 其致密性较高, 同时, 长链桥接分子也导致的分层间黏滞性也增加, 但这种分层间的黏滞力在C原子数大于10后影响较小. 在混合液体膜中, 由于短链分子的加入, 分层内分子缠绕度及致密性降低, 导致液体黏性增加. 当仅在上、下基板附近各形成一层分层或无分层, 且中间部分仍是流体态时, 使得内部黏滞作用增强, 摩擦增大, 这也是纯C16膜和C6C12膜的摩擦比其他同类膜强的主要原因.

    本文采用分子动力学模拟方法, 研究了直链烷烃液体膜的摩擦性质, 探讨了分子链长对其摩擦性质的影响, 分析了混合膜的结构对摩擦性质影响的机理. 结果表明: 在滑动过程中, 非极性烷烃液体中无“黏-滑”效应, 摩擦力呈无规律变化. 纯液体膜中, 当碳原子数大于8时, 除C16烷烃膜具有最大摩擦力外, 其他液体膜摩擦性质较为稳定. 在混合液体膜中, C6C12混合膜的摩擦最大; 当长链分子C原子数小于12时, 短链分子起到稀释作用, 液体膜的摩擦降低; 当长链分子C原子数大于10时, 短链分子增强膜的摩擦; 长链分子C原子数大于12时, 液体膜摩擦性质保持稳定. 液体膜在滑动过程中形成的多层高致密性分层是摩擦降低的主要原因. 液体膜与基板间相互作用对摩擦有贡献.

    感谢中国矿业大学现代分析与计算中心提供的集群机时.

    [1]

    Murphy A B, Tanaka M, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205Google Scholar

    [2]

    Pires I, Quintino L, Miranda R M 2007 Mater. Design 28 1623Google Scholar

    [3]

    Lones L A, Eagar T W, Lang J H 1998 J. Phys. D: Appl. Phys. 31 107Google Scholar

    [4]

    Lu S P, Fujii H, Nogi K, Sato T 2007 Sci. Technol. Weld. Joi. 12 689Google Scholar

    [5]

    Palmer T A, DebRoy T 1998 Sci. Technol. Weld. Joi. 3 190Google Scholar

    [6]

    Fujii H, Sato T, Lu S P, Nogi K 2008 Mater. Sci. Eng. 495 29

    [7]

    Church J G, Imaizumi H 1990 IIW/IIS Doc. XII-1199-90

    [8]

    张建晓, 樊丁, 黄勇 2017 焊接学报 38 47Google Scholar

    Zhang J X, Fan, D, Huang Y 2017 Trans. China Weld. Inst. 38 47Google Scholar

    [9]

    Wang X, Fan D, Huang J, Huang Y 2014 J. Phys. D: Appl. Phys. 47 275202Google Scholar

    [10]

    Hsu K C, Mtemadi K, Pfender E 1983 J. Appl. Phys. 54 1293

    [11]

    Fan D, Ushio M, Matsuda F 1986 Trans. JWRI 15 1

    [12]

    Lowke J J, Morrow R, Haidar J 1997 J. Phys. D: Appl. Phys. 30 2033Google Scholar

    [13]

    Kim W H, Fan H G, Na S J 1997 Metall. Mater. Trans. B 28B 679

    [14]

    Choo R T C, Szekely J, Westhoff R C 1992 Metall. Mater. Trans. B 23B 57

    [15]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S , Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 194006Google Scholar

    [16]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2003 Plasma Chem. Plasma Process. 23 585Google Scholar

    [17]

    袁行球, 李辉, 赵太泽, 王飞, 俞国扬, 郭文康, 须平 2004 物理学报 53 3806Google Scholar

    Yuan X Q, Li H, Zhao T Z, Wang F, Yu G Y, Guo W K, Xu P 2004 Acta Phys. Sin. 53 3806Google Scholar

    [18]

    石玗, 郭朝博, 黄健康, 樊丁 2011 物理学报 60 048102Google Scholar

    Shi Y, Guo C B, Huang J K, Fan D 2011 Acta Phys. Sin. 60 048102Google Scholar

    [19]

    王新鑫, 樊丁, 黄健康, 黄勇 2013 物理学报 62 228101Google Scholar

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101Google Scholar

    [20]

    Bini R, Monno M, Boulos M I 2006 J. Phys. D: Appl. Phys. 39 3253Google Scholar

    [21]

    Hsu K C, Pfender E 1983 J. Appl. Phys. 54 4359Google Scholar

    [22]

    Konishi K, Shigeta M, Tanaka M, Murata A, Murata T, Murphy A B 2017 Weld. World 61 197Google Scholar

    [23]

    黄勇, 刘林, 王新鑫, 陆肃中 2017 焊接学报 39 6Google Scholar

    Huang Y, Liu L, Wang X X, Lu S Z 2017 Trans. China Weld. Inst. 39 6Google Scholar

    [24]

    Baeva M, Kozakov R, Gorchakov S, Uhrlandt D 2012 Plasma Sources Sci. Technol. 21 055027Google Scholar

    [25]

    Baeva M 2017 Plasma Chem. Plasma Process. 37 513Google Scholar

    [26]

    钱海洋, 吴彬 2011 核聚变与等离子体物理 31 186

    Qian H Y, Wu B 2011 Nucl. Fusion Plasma Phys. 31 186

    [27]

    Li H P, Benilov M S 2007 J. Phys. D: Appl. Phys. 40 2010Google Scholar

    [28]

    Wei F Z, Wang H X, Murphy A B, Sun W P, Liu Y 2013 J. Phys. D: Appl. Phys. 46 505205Google Scholar

    [29]

    Zhang X N, Li H P, Murphy A B, Xia W D 2013 Phys. Plasmas 20 033508Google Scholar

    [30]

    Li H P, Zhang X N, Xia W D 2013 Phys. Plasmas 20 033509Google Scholar

    [31]

    Zhao G Y, Dassanayake M, Etemadi K 1990 Plasma Chem. Plasma Process. 10 87Google Scholar

    [32]

    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy A B, Lowke J J 2010 J. Phys. D: Appl. Phys. 43 434009Google Scholar

    [33]

    Schnick M, Füssel U, Hertel M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 022001Google Scholar

    [34]

    Wang X, Luo Y, Wu G, Chi L, Fan D 2018 Plasma Chem. Plasma Process. 38 1095Google Scholar

    [35]

    菅晓霞, 武传松 2016 金属学报 52 1467

    Jian X X, Wu C S 2016 Acta Metall. Sin. 52 1467

    [36]

    Savas A, Ceyhun V 2012 Comp. Mater. Sci. 51 53

    [37]

    Wang L L, Lu F G, Wang H P, Murphy A B, Tang X H 2014 J. Phys. D: Appl. Phys. 47 465202Google Scholar

    [38]

    Rao Z H, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 044902Google Scholar

    [39]

    Murphy A B 1994 Phys. Rev. Lett. 73 1797Google Scholar

    [40]

    Murphy A B 1997 Phys. Rev. E 55 7473

    [41]

    Murphy A B, Hiraoka K 2000 J. Phys. D: Appl. Phys. 33 2183Google Scholar

    [42]

    Bitharas I, McPherson N A, McGhie W, Roy D, Moore A J 2018 J. Mater. Process. Tech. 255 451Google Scholar

    [43]

    黄勇, 陆肃中, 王新鑫, 李慧 2016 焊接学报 37 36

    Huang Y, Lu S Z, Wang X X, Li H 2016 China Weld. Inst. 37 36

    [44]

    Chen J, Xu H, Wei X, Lv H, Song Z, Chen Z 2017 Vacuum 145 77Google Scholar

    [45]

    杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 物理学报 66 185202Google Scholar

    Yang Y, Tang C S, Zhao Y F, Yu Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202Google Scholar

    [46]

    Murphy A B 1993 Phys. Rev. E 48 3594Google Scholar

    [47]

    Murphy A B 1993 J. Chem. Phys. 99 1340Google Scholar

    [48]

    查普曼, 考林 著 (刘大有, 王伯懿 译) 1985 非均匀气体的数学理论 (第三版) (北京: 科学出版社) 第178−191, 343−344页

    Chapman S, Cowling T G (translated by Liu D Y, Wang B Y 1970 The Mathematical Theory of Non-Uniform Gases (3rd ed.) (Beijing: Science Press) pp178−191, 343−344 (in Chinese)

    [49]

    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922Google Scholar

    [50]

    Murphy A B 1998 J. Phys. D: Appl. Phys. 31 3383Google Scholar

    [51]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451Google Scholar

    [52]

    Cram L E 1985 J. Phys. D: Appl. Phys. 18 40

    [53]

    Choquet I, Shirvan J A, Nilsson H 2012 J. Phys. D: Appl. Phys. 45 205203Google Scholar

    [54]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2002 Metall. Mater. Trans. A 33 2043Google Scholar

    [55]

    Wang X, Huang J, Huang Y, Fan D, Guo Y 2017 Appl. Therm. Eng. 113 27Google Scholar

    [56]

    陆善平, 董文超, 李殿中, 李依依 2009 物理学报 58 94

    Lu S, Dong W, Li D, Li Y 2009 Acta Phys. Sin. 58 94

    [57]

    黄勇, 王艳磊, 张治国 2014 光谱学与光谱分析 34 1168Google Scholar

    Huang Y, Wang Y L, Zhang Z G 2014 Spectrsc. Spect. Anal. 34 1168Google Scholar

  • 图 1  扩散系数 (a) 组合普通扩散系数$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^x} $; (b) 组合温度扩散系数$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^T} $

    Figure 1.  Diffusion coefficients: (a) Combined ordinary diffusion coefficient$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^x} $; (b) combined temperature diffusion coefficient$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^T} $

    图 2  求解域示意图

    Figure 2.  Schematic of the computation domain.

    图 3  混合气体电弧的温度场和氧组分质量分数分布 (a) 200 A; (b) 80 A

    Figure 3.  Temperature field and oxygen mass fraction of Ar-O2 mixture gas arc for different current: (a) 200 A; (b) 80 A

    图 4  距离钨极尖端不同位置氧组分质量分数的径向分布 (a) 200 A; (b) 80 A

    Figure 4.  Radial distributions of the mass fraction of oxygen at different distances below the cathode: (a) 200 A; (b) 80 A.

    图 5  混合气体电弧的流场 (a) 200 A; (b) 80 A

    Figure 5.  Flow fiels of mixture gas arc:(a) 200 A; (b) 80 A.

    图 6  混合气体电弧阳极表面0.1 mm处氧组分的分布

    Figure 6.  Oxygen mass fraction of mixture gas arc 0.1 mm above the anode.

    图 7  氧组分对电弧温度场的影响 (a) 200 A; (b) 80 A

    Figure 7.  Effect of oxygen on the arc temperature field: (a) 200 A; (b) 80 A.

    图 8  氧组分对电弧流场的影响 (a) 200 A; (b) 80 A

    Figure 8.  Effect of oxygen on the arc flow field: (a) 200 A; (b) 80 A.

    图 9  200 A电流TIG电弧的温度场对比

    Figure 9.  Comparison of the calculated temperature fiels of TIG arc for 200 A current.

    图 10  距离阴极尖端不同位置氧组分径向分布的计算结果对比 (a) Murphy的结果[40]; (b) 本文的结果

    Figure 10.  Comparison of radial distribution of oxygen calculated at different distances below the cathode: (a) Murphy’s results[40]; (b) the present model’s results.

    表 1  边界条件

    Table 1.  Boundary conditions.

    边界v/m·s–1T/KΦ/VA/Wb·m–1YA
    AB1000jz$\partial$A/$\partial$n=0
    BCvgiv500$\partial$Φ/$\partial$n=0$\partial$A/$\partial$n=00.05
    CD$\partial$v/$\partial$n=0500$\partial$Φ/$\partial$n=0A=00.05
    DE20000$\partial$A/$\partial$n=0$\partial$YA/$\partial$n=0
    EA$\partial$v/$\partial$n=0$\partial$T/$\partial$n=0$\partial$Φ/$\partial$n=0$\partial$A/$\partial$n=0$\partial$YA/$\partial$n=0
    BFNon-slip(12)式CoupledCoupledYAgiv
    DownLoad: CSV
  • [1]

    Murphy A B, Tanaka M, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205Google Scholar

    [2]

    Pires I, Quintino L, Miranda R M 2007 Mater. Design 28 1623Google Scholar

    [3]

    Lones L A, Eagar T W, Lang J H 1998 J. Phys. D: Appl. Phys. 31 107Google Scholar

    [4]

    Lu S P, Fujii H, Nogi K, Sato T 2007 Sci. Technol. Weld. Joi. 12 689Google Scholar

    [5]

    Palmer T A, DebRoy T 1998 Sci. Technol. Weld. Joi. 3 190Google Scholar

    [6]

    Fujii H, Sato T, Lu S P, Nogi K 2008 Mater. Sci. Eng. 495 29

    [7]

    Church J G, Imaizumi H 1990 IIW/IIS Doc. XII-1199-90

    [8]

    张建晓, 樊丁, 黄勇 2017 焊接学报 38 47Google Scholar

    Zhang J X, Fan, D, Huang Y 2017 Trans. China Weld. Inst. 38 47Google Scholar

    [9]

    Wang X, Fan D, Huang J, Huang Y 2014 J. Phys. D: Appl. Phys. 47 275202Google Scholar

    [10]

    Hsu K C, Mtemadi K, Pfender E 1983 J. Appl. Phys. 54 1293

    [11]

    Fan D, Ushio M, Matsuda F 1986 Trans. JWRI 15 1

    [12]

    Lowke J J, Morrow R, Haidar J 1997 J. Phys. D: Appl. Phys. 30 2033Google Scholar

    [13]

    Kim W H, Fan H G, Na S J 1997 Metall. Mater. Trans. B 28B 679

    [14]

    Choo R T C, Szekely J, Westhoff R C 1992 Metall. Mater. Trans. B 23B 57

    [15]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S , Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 194006Google Scholar

    [16]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2003 Plasma Chem. Plasma Process. 23 585Google Scholar

    [17]

    袁行球, 李辉, 赵太泽, 王飞, 俞国扬, 郭文康, 须平 2004 物理学报 53 3806Google Scholar

    Yuan X Q, Li H, Zhao T Z, Wang F, Yu G Y, Guo W K, Xu P 2004 Acta Phys. Sin. 53 3806Google Scholar

    [18]

    石玗, 郭朝博, 黄健康, 樊丁 2011 物理学报 60 048102Google Scholar

    Shi Y, Guo C B, Huang J K, Fan D 2011 Acta Phys. Sin. 60 048102Google Scholar

    [19]

    王新鑫, 樊丁, 黄健康, 黄勇 2013 物理学报 62 228101Google Scholar

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101Google Scholar

    [20]

    Bini R, Monno M, Boulos M I 2006 J. Phys. D: Appl. Phys. 39 3253Google Scholar

    [21]

    Hsu K C, Pfender E 1983 J. Appl. Phys. 54 4359Google Scholar

    [22]

    Konishi K, Shigeta M, Tanaka M, Murata A, Murata T, Murphy A B 2017 Weld. World 61 197Google Scholar

    [23]

    黄勇, 刘林, 王新鑫, 陆肃中 2017 焊接学报 39 6Google Scholar

    Huang Y, Liu L, Wang X X, Lu S Z 2017 Trans. China Weld. Inst. 39 6Google Scholar

    [24]

    Baeva M, Kozakov R, Gorchakov S, Uhrlandt D 2012 Plasma Sources Sci. Technol. 21 055027Google Scholar

    [25]

    Baeva M 2017 Plasma Chem. Plasma Process. 37 513Google Scholar

    [26]

    钱海洋, 吴彬 2011 核聚变与等离子体物理 31 186

    Qian H Y, Wu B 2011 Nucl. Fusion Plasma Phys. 31 186

    [27]

    Li H P, Benilov M S 2007 J. Phys. D: Appl. Phys. 40 2010Google Scholar

    [28]

    Wei F Z, Wang H X, Murphy A B, Sun W P, Liu Y 2013 J. Phys. D: Appl. Phys. 46 505205Google Scholar

    [29]

    Zhang X N, Li H P, Murphy A B, Xia W D 2013 Phys. Plasmas 20 033508Google Scholar

    [30]

    Li H P, Zhang X N, Xia W D 2013 Phys. Plasmas 20 033509Google Scholar

    [31]

    Zhao G Y, Dassanayake M, Etemadi K 1990 Plasma Chem. Plasma Process. 10 87Google Scholar

    [32]

    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy A B, Lowke J J 2010 J. Phys. D: Appl. Phys. 43 434009Google Scholar

    [33]

    Schnick M, Füssel U, Hertel M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 022001Google Scholar

    [34]

    Wang X, Luo Y, Wu G, Chi L, Fan D 2018 Plasma Chem. Plasma Process. 38 1095Google Scholar

    [35]

    菅晓霞, 武传松 2016 金属学报 52 1467

    Jian X X, Wu C S 2016 Acta Metall. Sin. 52 1467

    [36]

    Savas A, Ceyhun V 2012 Comp. Mater. Sci. 51 53

    [37]

    Wang L L, Lu F G, Wang H P, Murphy A B, Tang X H 2014 J. Phys. D: Appl. Phys. 47 465202Google Scholar

    [38]

    Rao Z H, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 044902Google Scholar

    [39]

    Murphy A B 1994 Phys. Rev. Lett. 73 1797Google Scholar

    [40]

    Murphy A B 1997 Phys. Rev. E 55 7473

    [41]

    Murphy A B, Hiraoka K 2000 J. Phys. D: Appl. Phys. 33 2183Google Scholar

    [42]

    Bitharas I, McPherson N A, McGhie W, Roy D, Moore A J 2018 J. Mater. Process. Tech. 255 451Google Scholar

    [43]

    黄勇, 陆肃中, 王新鑫, 李慧 2016 焊接学报 37 36

    Huang Y, Lu S Z, Wang X X, Li H 2016 China Weld. Inst. 37 36

    [44]

    Chen J, Xu H, Wei X, Lv H, Song Z, Chen Z 2017 Vacuum 145 77Google Scholar

    [45]

    杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 物理学报 66 185202Google Scholar

    Yang Y, Tang C S, Zhao Y F, Yu Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202Google Scholar

    [46]

    Murphy A B 1993 Phys. Rev. E 48 3594Google Scholar

    [47]

    Murphy A B 1993 J. Chem. Phys. 99 1340Google Scholar

    [48]

    查普曼, 考林 著 (刘大有, 王伯懿 译) 1985 非均匀气体的数学理论 (第三版) (北京: 科学出版社) 第178−191, 343−344页

    Chapman S, Cowling T G (translated by Liu D Y, Wang B Y 1970 The Mathematical Theory of Non-Uniform Gases (3rd ed.) (Beijing: Science Press) pp178−191, 343−344 (in Chinese)

    [49]

    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922Google Scholar

    [50]

    Murphy A B 1998 J. Phys. D: Appl. Phys. 31 3383Google Scholar

    [51]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451Google Scholar

    [52]

    Cram L E 1985 J. Phys. D: Appl. Phys. 18 40

    [53]

    Choquet I, Shirvan J A, Nilsson H 2012 J. Phys. D: Appl. Phys. 45 205203Google Scholar

    [54]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2002 Metall. Mater. Trans. A 33 2043Google Scholar

    [55]

    Wang X, Huang J, Huang Y, Fan D, Guo Y 2017 Appl. Therm. Eng. 113 27Google Scholar

    [56]

    陆善平, 董文超, 李殿中, 李依依 2009 物理学报 58 94

    Lu S, Dong W, Li D, Li Y 2009 Acta Phys. Sin. 58 94

    [57]

    黄勇, 王艳磊, 张治国 2014 光谱学与光谱分析 34 1168Google Scholar

    Huang Y, Wang Y L, Zhang Z G 2014 Spectrsc. Spect. Anal. 34 1168Google Scholar

  • [1] Wei Zhen-Yu, Liu Ya-Kun. Study on the Characteristics and Influencing Factors of Excited Oxygen Atom Generation in Secondary Streamer Discharge of Mixed Gases with Different Oxygen Concentrations. Acta Physica Sinica, 2025, 74(3): . doi: 10.7498/aps.74.20241550
    [2] Zou Xiong, Qi Xiao-Bo, Zhang Tao-Xian, Gao Zhang-Fan, Huang Wei-Xing. Numerical simulation of filling and evacuating process of impurity gas in target capsule of inertial confinement fusion. Acta Physica Sinica, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [3] Wang Qian-Jin, Sun Peng-Shuai, Zhang Zhi-Rong, Zhang Le-Wen, Yang Xi, Wu Bian, Pang Tao, Xia Hua, Li Qi-Yong. Separation and analysis method of overlapping absorption spectra with cross interference in gas mixture measurement. Acta Physica Sinica, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [4] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [5] Cai Ji-Xing, Guo Ming, Qu Xu, Li He, Jin Guang-Yong. Gas dynamics and combustion wave expanding velocity of laser induced plasma. Acta Physica Sinica, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [6] Zhou Xiang-Man, Zhang Hai-Ou, Wang Gui-Lan, Bai Xing-Wang. Simulation of the influences of surface topography of deposited layer on arc shape and state in arc based additive forming. Acta Physica Sinica, 2016, 65(3): 038103. doi: 10.7498/aps.65.038103
    [7] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [8] Zhao Jia-Rui, Li Yi-Fei, Ma Jing-Long, Wang Jin-Guang, Huang Kai, Han Yu-Jing, Ma Yong, Yan Wen-Chao, Li Da-Zhang, Yuan Da-Wei, Li Yu-Tong, Zhang Jie, Chen Li-Ming. Characterizations of clusters generated by pure xenon and hydrogen xenon gas mixture at room temperature. Acta Physica Sinica, 2015, 64(4): 042101. doi: 10.7498/aps.64.042101
    [9] Ning Li-Zhong, Wang Na, Yuan Zhe, Li Kai-Ji, Wang Zhuo-Yun. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture. Acta Physica Sinica, 2014, 63(10): 104401. doi: 10.7498/aps.63.104401
    [10] Bai Zhan-Guo, Li Xin-Zheng, Li Yan, Zhao Kun. Numerical analysis on multi-armed spiral patterns in gas discharge system. Acta Physica Sinica, 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [11] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [12] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [13] Du Hong-Liang, He Li-Ming, Lan Yu-Dan, Wang Feng. Influence of reduced electric field on the evolvement characteristics of plasma under conditions of N2/O2 discharge. Acta Physica Sinica, 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [14] Guo Chao-Bo, Shi Yu, Fan Ding, Huang Jian-Kang. Numerical simulation of pulsed current tungesteninert gas (TIG) welding arc. Acta Physica Sinica, 2011, 60(4): 048102. doi: 10.7498/aps.60.048102
    [15] Lan Yu-Dan, He Li-Ming, Ding Wei, Wang Feng. Evolution of H2/O2 mixture plasma under different initial temperatures. Acta Physica Sinica, 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [16] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [17] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [18] Yuan Xing-Qiu, Li Hui, Zhao Tai-Zhe, Wang Fei, Y u Guo-Yang, Guo Wen-Kang, Xu Ping. Study of the characteristic of D.C.arc plasma torch*. Acta Physica Sinica, 2004, 53(11): 3806-3813. doi: 10.7498/aps.53.3806
    [19] Zou Xiu, Gong Ye, Liu Jin-Yuan, Gong Ji-Quan. The effect of external magnetic field, current and arc column radiuson the arc helical instability. Acta Physica Sinica, 2004, 53(3): 824-828. doi: 10.7498/aps.53.824
    [20] Gong Ji-Quan, Gong Ye, Liu Jin-Yuan, Zhang Peng-Yun. . Acta Physica Sinica, 2002, 51(2): 291-295. doi: 10.7498/aps.51.291
Metrics
  • Abstract views:  9155
  • PDF Downloads:  94
Publishing process
  • Received Date:  25 March 2019
  • Accepted Date:  16 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回