Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of thermal and dielectric properties for SiO2/polytetrafluoroethylene dielectric composite

Liu Yue-Li Zhao Si-Jie Chen Wen Zhou Jing

Citation:

Numerical simulation of thermal and dielectric properties for SiO2/polytetrafluoroethylene dielectric composite

Liu Yue-Li, Zhao Si-Jie, Chen Wen, Zhou Jing
PDF
HTML
Get Citation
  • Coefficient of thermal expansion (CTE) and dielectric constant for the SiO2/polytetrafluoroethylene (SiO2/PTFE) dielectric composite are mainly influenced by their filling content, and how to accurately predict the effect is still a great challenge untill now. In this work, the CTE and dielectric constant of SiO2/PTFE dielectric composite are systematically investigated by numerical simulation. The results show that with the increase of SiO2 content, CTE of SiO2/PTFE dielectric composite decreases, and the dielectric constant increases, which are in good agreement with the data reported in the literature (Han K K, Zhou J, Li Q Z, Shen J, Qi Y Y, Yao X P, Chen W 2020 J. Mater. Sci. Mater. Electron. 31 9196). The 30% (volume fraction) solid SiO2 sphere (SSS)/PTFE dielectric composite is the smallest CTE of 7.5×10–5 K–1, while 10% (volume fraction) hollow solid sphere (HSS)/PTFE possesses the smallest dielectric constant of 2.06. The CTE of SiO2/PTFE dielectric composite may decrease when the SiO2 distribution is dense at the bottom. The large aspect ratio of SiO2 filler may reduce CTEx of SiO2/PTFE dielectric composite. The molding parameters have little effect on the thermal expansion coefficient of the solid SiO2/PTFE composite dielectric material. This work provides a clear insight into the controlling of CTE and dielectric constant of SiO2/PTFE dielectric composite by adjusting its microstructure.
      Corresponding author: Zhou Jing, zhoujing@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174298), the Key Projects of Natural Science Foundation of Hubei Province, China (Grant No. 2019CFA044), the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City, China (Grant No. 20201g0158), and the National Natural Science Foundation of Shenzhen City, China (Grant No. JCYJ20210324135002007).
    [1]

    Sebastian M T, Jantunen H 2010 Int. J. Appl. Ceram. Technol. 7 415Google Scholar

    [2]

    Sadeghifar H, Djilali N, Bahrami M 2014 J. Power Sources 248 632Google Scholar

    [3]

    Feng X, Diao X S, Shi Y J, Wang H Y, Sun S H, Lu X H 2006 Wear 261 1208Google Scholar

    [4]

    Murali K P, Rajesh S, Prakash O, Kulkarni A R, Ratheesh R 2009 Compos. Pt. A: Appl. Sci. Manuf. 40 1179Google Scholar

    [5]

    Yuan Y, Yin Y T, Yu D D, Lin H D, Wang J, Tang B, Li E Z 2017 J. Mater. Sci. Mater. Electron. 28 3356Google Scholar

    [6]

    Tang A G, Wang M L, Huang W, Wang X L 2015 Surf. Coat. Technol. 282 121Google Scholar

    [7]

    Luo F C, Tang B, Yuan Y, Fang Z X, Zhang S R 2018 Appl. Surf. Sci. 456 637Google Scholar

    [8]

    Zheng L, Zhou J, Shen J, Qi Y Y, Li S, Shen S 2018 J. Mater. Sci. Mater. Electron. 29 17195Google Scholar

    [9]

    Ren J Q, Yang P, Peng Z J, Fu X L 2021 Ceram. Int. 47 20867Google Scholar

    [10]

    Jiang P F, Bian J J 2019 Int. J. Appl. Ceram. Technol. 16 152Google Scholar

    [11]

    Chen W Z, Yu Y L, Gu Y P, Ji Y C, He J J, Li Z D, Zheng G Y, Wang J L, Wu Y, Long F 2022 Compos. Pt. A: Appl. Sci. Manuf. 154 106783Google Scholar

    [12]

    Yuan Y, Li Z T, Cao L, Tang B, Zhang S R 2019 Ceram. Int. 45 16569Google Scholar

    [13]

    Dai J H, Liang F, Zhang R, Lu W Z, Fan G F 2022 Ceram. Int. 48 2362Google Scholar

    [14]

    Murali K P, Rajesh S, Prakash O, Kulkarni A R, Ratheesh R 2010 Mater. Chem. Phys. 122 317Google Scholar

    [15]

    王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 物理学报 69 218101Google Scholar

    Wang J, Liu S H, Zhou M, Hao H S, Zhai J W 2020 Acta Phys. Sin. 69 218101Google Scholar

    [16]

    Peng H Y, Ren H S, Dang M Z, Zhang Y, Yao X G, Lin H X 2018 Ceram. Int. 44 16556Google Scholar

    [17]

    Sasikala T S, Sebastian M T 2016 Ceram. Int. 42 7551Google Scholar

    [18]

    Chen Y C, Lin H C, Lee Y D 2003 J. Polym. Res. 10 247Google Scholar

    [19]

    Kemaloglu S, Ozkoc G, Aytac A 2010 Polym. Compos. 31 1398Google Scholar

    [20]

    Zhou W Y, Wang C F, Ai T, Wu K, Zhao F J, Gu H Z 2009 Compos. Pt. A: Appl. Sci. Manuf. 40 830Google Scholar

    [21]

    Zhou H, Wei D Y, Fan Y, Chen H, Yang Y S, Yu J J, Jin L G 2016 Mater. Sci. Eng. B:Adv. Funct. Solid: State Mater. 203 13Google Scholar

    [22]

    Jiang Z H, Yuan Y 2018 Mater. Res. Express 5 066306Google Scholar

    [23]

    Ndayishimiye A, Tsuji K, Wang K, Bang S H, Randall C A 2019 J. Eur. Ceram. Soc. 39 4743Google Scholar

    [24]

    刘康, 孙华锐 2020 物理学报 69 028501Google Scholar

    Liu K, Sun H R 2020 Acta Phys. Sin. 69 028501Google Scholar

    [25]

    黎威志, 王军 2012 物理学报 61 114401Google Scholar

    Li W Z, Wang J 2012 Acta Phys. Sin. 61 114401Google Scholar

    [26]

    邵春瑞, 李海洋, 王军, 夏国栋 2021 物理学报 70 236501Google Scholar

    Shao C R, Li H Y, Wang J, Xia G D 2021 Acta Phys. Sin. 70 236501Google Scholar

    [27]

    Shi X L, Aghdam M K H, Ansari R 2019 Proc. Inst. Mech. Eng. Pt. L: J. Mater. Design Appl. 233 1843Google Scholar

    [28]

    Hassanzadeh-Aghdam M K, Ansari R 2020 Mater. Chem. Phys. 252 123273Google Scholar

    [29]

    Chawla N, Deng X, Schnell D R M 2006 Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 426 314Google Scholar

    [30]

    Gurrum S P, Zhao J H, Edwards D R 2011 J. Mater. Sci. 46 101Google Scholar

    [31]

    Han K K, Zhou J, Li Q Z, Shen J, Qi Y Y, Yao X P, Chen W 2020 J. Mater. Sci. Mater. Electron. 31 9196Google Scholar

    [32]

    Kang S, Hong S I, Choe C R, et al. 2001 Polymer 42 879Google Scholar

    [33]

    Pan J, Bian L C 2017 Acta. Mech. 228 4341Google Scholar

    [34]

    La Carrubba V, Butters M, Zoetelief W 2008 Polym. Bull. 59 813Google Scholar

  • 图 1  SiO2/PTFE复合介质材料的几何结构 (a) SSS; (b) HSS

    Figure 1.  Geometric structure of the SiO2/PTFE dielectric composite: (a) SSS; (b) HSS.

    图 2  SiO2/PTFE复合介质材料的热通量边界条件示意图 (a) 垂直表面; (b)上下表面

    Figure 2.  Schematic diagram of heat flux boundary conditions for SiO2/PTFE dielectric composite: (a) Vertical surface; (b) upper and lower surfaces.

    图 3  SiO2/PTFE复合介质材料的边界载荷和固定边界条件示意图

    Figure 3.  Schematic diagram of boundary loading and fixed boundary condition for SiO2/PTFE dielectric composite.

    图 4  SiO2/PTFE复合介质材料应用非结构化四面体网格

    Figure 4.  Schematic diagram of applied unstructured tetrahedral mesh for SiO2/PTFE dielectric composite.

    图 5  Z轴位移分布示意图 (a) PTFE; (b) SiO2

    Figure 5.  Schematic diagram of Z-axis displacement distribution: (a) PTFE; (b) SiO2.

    图 6  不同SSS填充量的SSS/PTFE复合介质材料的位移分布 (a) 10%; (b) 15%; (c) 20%; (d) 25%; (e) 30%

    Figure 6.  Surface displacement distribution map of SSS/PTFE dielectric composite with different filling amounts of SSS: (a) 10%; (b) 15%; (c) 20%; (d) 25%; (e) 30%.

    图 7  SSS/PTFE复合介质材料的CTE和介电常数随SSS填充量的变化曲线 (a) CTE; (b) 介电常数

    Figure 7.  CTE and dielectric constant variations of SSS/PTFE composites with SSS filler contents: (a) CTE; (b) dielectric constant.

    图 8  不同HSS填充量的HSS/PTFE复合介质材料的位移分布 (a) 10%; (b) 15%; (c) 20%; (d) 25%; (e) 30%

    Figure 8.  Surface displacement distribution map of HSS/PTFE dielectric composite with different HSS filling amounts: (a) 10%; (b) 15%; (c) 20%; (d) 25%; (e) 30%.

    图 9  HSS/PTFE复合介质材料的热膨胀系数和介电常数随HSS填充量的变化曲线 (a) CTE; (b) 介电常数

    Figure 9.  CTE and dielectric constant variations of HSS/PTFE dielectric composites with HSS filler contents: (a) CTE; (b) dielectric constant.

    图 10  不同长径比的纤维状SiO2/PTFE复合介质材料的X, Y, Z轴位移分布 (a)—(c) 长径比为5; (d)—(f) 长径比为10; (g)—(i) 长径比为20

    Figure 10.  X, Y, Z axes displacement distribution of SiO2/PTFE dielectric composite with different aspect ratios of SiO2 fiber: (a)–(c) Aspect ratio of 5; (d)–(f) aspect ratio of 10; (g)–(i) aspect ratio of 20.

    图 11  不同长径比的薄片状SiO2/PTFE复合介质材料X, Y, Z轴位移分布 (a)—(c) 长径比为5; (d)—(f) 长径比为10; (g)—(i) 长径比为20

    Figure 11.  X, Y, Z axes displacement distribution of SiO2/PTFE dielectric composite with different aspect ratios of SiO2 flake: (a)–(c) Aspect ratio of 5; (d)–(f) aspect ratio of 10; (g)–(i) aspect ratio of 20.

    图 12  不同SiO2长径比SiO2/PTFE复合介质材料的CTE (a) 纤维状SiO2; (b) 薄片状SiO2

    Figure 12.  CTE of SiO2/PTFE dielectric composite with different aspect ratios of SiO2 filler: (a) SiO2 fiber; (b) SiO2 flake.

    图 13  SiO2/PTFE复合介质材料的SiO2分布模型

    Figure 13.  SiO2 distribution model of SiO2/PTFE dielectric composite.

    图 14  SiO2/PTFE复合介质材料的位移随时间的变化

    Figure 14.  Displacement variations of SiO2/PTFE dielectric composite with different time.

    表 1  材料物性参数

    Table 1.  Physical parameters of materials.

    材料PTFESiO2空气
    密度 ρ/(g·cm–3)2.102.20
    热导率 k/(W·m–1·K–1)0.241.40
    比热容 c/(103 J·kg–1·K–1)1.050.73
    泊松比 ν0.400.220
    杨氏模量 E/GPa0.2870.0
    CTE/(10–6 K–1)1090.50
    介电常数2.053.501.00
    DownLoad: CSV

    表 2  SiO2/PTFE复合介质材料的CTE

    Table 2.  CTE of SiO2/PTFE dielectric composite.

    不同的分布情况CTE/(10–6 K–1)
    1, 2, 3, 4分布10%; 5, 6, 7, 8分布20%101.34
    1, 2, 3, 4分布20%; 5, 6, 7, 8分布10%96.78
    1, 3, 4, 5分布20%; 2, 6, 7, 8分布10%97.85
    1, 3, 4, 6分布20%; 2, 5, 7, 8分布10%98.05
    1, 3, 4, 7分布20%; 2, 5, 6, 8分布10%97.81
    1, 3, 4, 8分布20%; 2, 5, 6, 7分布10%97.80
    1, 3, 5, 7分布20%; 2, 4, 6, 8分布10%98.71
    1, 3, 6, 8分布20%; 2, 4, 5, 7分布10%99.09
    1, 6, 7, 8分布20%; 2, 3, 4, 5分布10%100.02
    DownLoad: CSV
  • [1]

    Sebastian M T, Jantunen H 2010 Int. J. Appl. Ceram. Technol. 7 415Google Scholar

    [2]

    Sadeghifar H, Djilali N, Bahrami M 2014 J. Power Sources 248 632Google Scholar

    [3]

    Feng X, Diao X S, Shi Y J, Wang H Y, Sun S H, Lu X H 2006 Wear 261 1208Google Scholar

    [4]

    Murali K P, Rajesh S, Prakash O, Kulkarni A R, Ratheesh R 2009 Compos. Pt. A: Appl. Sci. Manuf. 40 1179Google Scholar

    [5]

    Yuan Y, Yin Y T, Yu D D, Lin H D, Wang J, Tang B, Li E Z 2017 J. Mater. Sci. Mater. Electron. 28 3356Google Scholar

    [6]

    Tang A G, Wang M L, Huang W, Wang X L 2015 Surf. Coat. Technol. 282 121Google Scholar

    [7]

    Luo F C, Tang B, Yuan Y, Fang Z X, Zhang S R 2018 Appl. Surf. Sci. 456 637Google Scholar

    [8]

    Zheng L, Zhou J, Shen J, Qi Y Y, Li S, Shen S 2018 J. Mater. Sci. Mater. Electron. 29 17195Google Scholar

    [9]

    Ren J Q, Yang P, Peng Z J, Fu X L 2021 Ceram. Int. 47 20867Google Scholar

    [10]

    Jiang P F, Bian J J 2019 Int. J. Appl. Ceram. Technol. 16 152Google Scholar

    [11]

    Chen W Z, Yu Y L, Gu Y P, Ji Y C, He J J, Li Z D, Zheng G Y, Wang J L, Wu Y, Long F 2022 Compos. Pt. A: Appl. Sci. Manuf. 154 106783Google Scholar

    [12]

    Yuan Y, Li Z T, Cao L, Tang B, Zhang S R 2019 Ceram. Int. 45 16569Google Scholar

    [13]

    Dai J H, Liang F, Zhang R, Lu W Z, Fan G F 2022 Ceram. Int. 48 2362Google Scholar

    [14]

    Murali K P, Rajesh S, Prakash O, Kulkarni A R, Ratheesh R 2010 Mater. Chem. Phys. 122 317Google Scholar

    [15]

    王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 物理学报 69 218101Google Scholar

    Wang J, Liu S H, Zhou M, Hao H S, Zhai J W 2020 Acta Phys. Sin. 69 218101Google Scholar

    [16]

    Peng H Y, Ren H S, Dang M Z, Zhang Y, Yao X G, Lin H X 2018 Ceram. Int. 44 16556Google Scholar

    [17]

    Sasikala T S, Sebastian M T 2016 Ceram. Int. 42 7551Google Scholar

    [18]

    Chen Y C, Lin H C, Lee Y D 2003 J. Polym. Res. 10 247Google Scholar

    [19]

    Kemaloglu S, Ozkoc G, Aytac A 2010 Polym. Compos. 31 1398Google Scholar

    [20]

    Zhou W Y, Wang C F, Ai T, Wu K, Zhao F J, Gu H Z 2009 Compos. Pt. A: Appl. Sci. Manuf. 40 830Google Scholar

    [21]

    Zhou H, Wei D Y, Fan Y, Chen H, Yang Y S, Yu J J, Jin L G 2016 Mater. Sci. Eng. B:Adv. Funct. Solid: State Mater. 203 13Google Scholar

    [22]

    Jiang Z H, Yuan Y 2018 Mater. Res. Express 5 066306Google Scholar

    [23]

    Ndayishimiye A, Tsuji K, Wang K, Bang S H, Randall C A 2019 J. Eur. Ceram. Soc. 39 4743Google Scholar

    [24]

    刘康, 孙华锐 2020 物理学报 69 028501Google Scholar

    Liu K, Sun H R 2020 Acta Phys. Sin. 69 028501Google Scholar

    [25]

    黎威志, 王军 2012 物理学报 61 114401Google Scholar

    Li W Z, Wang J 2012 Acta Phys. Sin. 61 114401Google Scholar

    [26]

    邵春瑞, 李海洋, 王军, 夏国栋 2021 物理学报 70 236501Google Scholar

    Shao C R, Li H Y, Wang J, Xia G D 2021 Acta Phys. Sin. 70 236501Google Scholar

    [27]

    Shi X L, Aghdam M K H, Ansari R 2019 Proc. Inst. Mech. Eng. Pt. L: J. Mater. Design Appl. 233 1843Google Scholar

    [28]

    Hassanzadeh-Aghdam M K, Ansari R 2020 Mater. Chem. Phys. 252 123273Google Scholar

    [29]

    Chawla N, Deng X, Schnell D R M 2006 Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 426 314Google Scholar

    [30]

    Gurrum S P, Zhao J H, Edwards D R 2011 J. Mater. Sci. 46 101Google Scholar

    [31]

    Han K K, Zhou J, Li Q Z, Shen J, Qi Y Y, Yao X P, Chen W 2020 J. Mater. Sci. Mater. Electron. 31 9196Google Scholar

    [32]

    Kang S, Hong S I, Choe C R, et al. 2001 Polymer 42 879Google Scholar

    [33]

    Pan J, Bian L C 2017 Acta. Mech. 228 4341Google Scholar

    [34]

    La Carrubba V, Butters M, Zoetelief W 2008 Polym. Bull. 59 813Google Scholar

  • [1] Liao Qing, Li Bing-Sheng, Ge Fang-Fang, Zhang Hong-Peng, Shen Tie-Long, Mao Xue-Li, Wang Ren-Da, Sheng Yan-Bin, Chang Hai-Long, Wang Zhi-Guang, Xu Shuai, Chen Li-Ming, He Xiao-Xun. Stability and corrosion behavior of AlOx coating on T91 steel and SIMP steel in static liquid Pb-Bi eutectic at 600 ℃. Acta Physica Sinica, 2022, 71(15): 156103. doi: 10.7498/aps.71.20220356
    [2] Zuo Juan-Li, Yang Hong, Wei Bing-Qian, Hou Jing-Ming, Zhang Kai. Numerical simulation of gas-liquid two-phase flow in gas lift system. Acta Physica Sinica, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [3] Wang Dang-Hui, Xu Tian-Han, Song Hai-Yang. Thermal expansion behaviors of epitaxial film for wurtzite GaN studied by using temperature-dependent Raman scattering. Acta Physica Sinica, 2016, 65(13): 130702. doi: 10.7498/aps.65.130702
    [4] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [5] Huang Bin-Bin, Xiong Chuan-Bing, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Tang Ying-Wen, Quan Zhi-Jue, Xu Long-Quan, Zhang Meng, Wang Li, Fang Wen-Qing, Liu Jun-Lin, Jiang Feng-Yi. Electroluminescence properties of vertical structure GaN based LED on silicon and copper submount at different temperatures and current densities. Acta Physica Sinica, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [6] Wang Xiao-Juan, Ruan Ying, Hong Zhen-Yu. Thermophysical properties and rapid solidification of Al-Cu-Ge alloys. Acta Physica Sinica, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [7] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [8] Wang Xin-Xin, Fan Ding, Huang Jian-Kang, Huang Yong. Numerical simulation of coupled arc in double electrode tungsten inert gas welding. Acta Physica Sinica, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [9] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [10] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [11] Liu Fu-Sheng, Chen Xian-Peng, Xie Hua-Xing, Ao Wei-Qin, Li Jun-Qin. Negative thermal expansion of Sc2-xGaxW3O12 solid solution. Acta Physica Sinica, 2010, 59(5): 3350-3356. doi: 10.7498/aps.59.3350
    [12] Liu Dong-Rong, Sang Bao-Guang, Kang Xiu-Hong, Li Dian-Zhong. Modelling of macrosegregation in large steel ingot with considering solid movement. Acta Physica Sinica, 2009, 58(13): 104-S111. doi: 10.7498/aps.58.104
    [13] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [14] Jiang Hui-Feng, Zhang Qing-Chuan, Chen Xue-Dong, Fan Zhi-Chao, Chen Zhong-Jia, Wu Xiao-Ping. Numerical simulation of the dynamic interactions between dislocation and solute atoms. Acta Physica Sinica, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [15] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [16] Zhu Chang-Sheng, Wang Zhi-Ping, Jing Tao, Xiao Rong-Zhen. Numerical simulation of solute segregation patterns for a binary alloy using phase-field approach. Acta Physica Sinica, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [17] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [18] Zou Jun, Zhang Lian-Han, Zhou Sheng-Ming, Xu Jun, Han Ping, Zhang Rong. Study on the growth, modification and thermal properties of γ-LiAlO2 single crystals. Acta Physica Sinica, 2005, 54(9): 4269-4272. doi: 10.7498/aps.54.4269
    [19] Liu Xue-Rong, Hu Bo, Liu Wen-Han, Gao Chen. The theoretical calibration coefficient in the measurement of nonlinear dielectric constant with a scanning tip microwave near-field microscopy. Acta Physica Sinica, 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [20] Ding Bo-Jiang, Kuang Guang-Li, Liu Yue-Xiu, Shen Wei-Ci, Yu Jia-Wen, Shi Yao-Jiang. . Acta Physica Sinica, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
Metrics
  • Abstract views:  4925
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2022
  • Accepted Date:  07 July 2022
  • Available Online:  20 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回