-
The combination of superparamagnetic iron oxide nanoparticles (SPIOs) with ultrasonic contrast agent (UCA) microbubble is called magnetic microbubble (MMB) and has been used to produce multimodal contrast agents to enhance medical ultrasound and magnetic resonance imaging. The nanoparticles are either covalently linked to the shell or physically entrapped into the shell. Considering the effect of the volume fraction of SPIOs on the shell density and viscosity, a nonlinear dynamic equation of magnetic microbubbles (MMBs) with multilayer membrane structure is constructed based on the basic theory of bubble dynamics. The influences of the driving sound pressure and frequency, particle volume fraction, shell thickness and surface tension on the acoustic-dynamics behavior of microbubbles are numerically analyzed. The results show that when the volume fraction of magnetic particles is small and α ≤ 0.1, the acoustic properties of magnetic microbubbles are similar to those of ordinary UCA microbubbles. The acoustic response of the microbubble depends on its initial size and driving pressure. The critical sound pressure of microbubble vibration instability is lowest when the driving sound field frequency is twice the magnetic microbubble resonance frequency f0 (f = 2f0). The presence of magnetic particles inhibits the bubbles from expanding and contracting, but the inhibition effect is very limited. The surface tension parameter K of the outer film material and thickness of the shell also affect the vibration of the microbubble. When K and film thickness are 0.2–0.4 N/m and 50–150 nm respectively, it is observed that the bubble has an unstable vibration response region.
-
Keywords:
- magnetic microbubbles /
- nonlinear vibration /
- power spectrum /
- bifurcation diagram
[1] He W, Yang F, Wu Y H, Wen S, Chen P, Zhang Y, Gu N 2012 Mater. Lett. 68 64Google Scholar
[2] Porter T R, Feinstein S B, Ten Cate F J, Van den Bosch A E 2020 Ultrasound Med. Biol. 46 1071Google Scholar
[3] Stride E, Porter C, Prieto A G, Pankhurs Q 2009 Ultrasound Med. Biol. 35 861Google Scholar
[4] Dimcevski G, Kotopoulis S, Bjnes T, Hoem D 2016 J. Controlled Release 243 172Google Scholar
[5] Duan L, Yang F, Song L N, Fang K,Tian J L, Liang Y J, Li M X, Xu N, Chen Z D, Zhang Y, Gu N 2015 Soft Matter 11 5492Google Scholar
[6] Cho E, Chung S K, Rhee K 2015 Ultrasonics 62 66Google Scholar
[7] Hyun S M, Sejin S, Dong G Y, Tae W L, Jangwook L, Sangmin L, Ji Y Y, Jaeyoung L, Moon H H, Jae H P, Sun H K, Kuiwon C, Kinam P, Kwangmeyung K, Ick C K 2016 Biomaterials 108 57Google Scholar
[8] Gao Y, Chan C U, Gu Q S, Lin X D, Zhang W C, David Yeo C L, Astrid M A, Manish A, Mark Chong S K, Shi P, Claus D O and Xu C J 2016 NPG. Asia Mater. 8 e260Google Scholar
[9] Zhou T, Cai W B, Yang H L, Zhang H Z, Hao M H, Yuan L J, Liu J, Zhang L, Yang Y L, Liu X, Deng J L, Zhao P, Yang G D, Duan Y Y 2018 J. Controlled Release 276 113Google Scholar
[10] Sciallero C, Grishenkov D, Kothapalli S V, Oddo L, Trucco A 2013 J. Acoust. Soc. Am. 134 3918Google Scholar
[11] Gu Y Y, Chen C Y, Tu J, Guo X S, Wu H Y, Zhang D 2016 Ultrason. Sonochem. 29 309Google Scholar
[12] Marlies O, Valeria G, Jeroen S, Benjamin D, Nico D J, Detlef L, Michel V 2010 Ultrasound Med. Biol. 36 2080Google Scholar
[13] Mulvana H, Eckersley R J, Tang M X, Pankhurst Q, Stride E 2012 Ultrasound Med. Biol. 38 864Google Scholar
[14] Behnia S, Mobadersani F, Yahyavi M, Rezavand A 2013 Nonlinear Dyn. 74 559Google Scholar
[15] Hongray T, Ashok B, Balakrishnan J 2015 Pramana 84 517Google Scholar
[16] Shi J, Yang D S, Shi S G, Hu B, Zhang H Y, Hu S Y 2016 Chin. Phys. B 25 024304Google Scholar
[17] Church C C 1995 J. Acoust. Soc. Am. 97 1510Google Scholar
[18] Beguin E, Bau L, Shrivastava S, Stride E 2019 ACS Appl. Mater. Interfaces 11 1829Google Scholar
[19] Malvar S, Gontijo R G, Cunha F R 2018 J. Eng. Math. 108 143Google Scholar
[20] 莫润阳, 吴临燕, 詹思楠, 张引红 2015 物理学报 64 124301Google Scholar
Mo R Y, Wu L Y, Zhan S N, Zhang Y H 2015 Acta Phys. Sin. 64 124301Google Scholar
[21] Zhang D, Guo G P, Lu L, Yin L L, Tu J, Guo X S, Xu D, Wu J R 2014 Phys. Med. Biol. 59 6729Google Scholar
[22] Hosseini S M, Ghasemi E, Fazlali A, Henneke E 2012 J. Nanopart. Res. 14 858Google Scholar
[23] 陈伟中 2014 声空化物理 (北京 科学出版社) 第415−417页
Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) pp415−417 (in Chinese)
[24] Doinikov A, Dayton P A 2007 J. Acoust. Soc. Am. 121 3331Google Scholar
[25] Sijl J, Dollet B, Overvelde M, Garbinet V, Rozendal T, De Jong N, Lohse De, Versluis M 2010 J. Acoust. Soc. Am. 128 3239Google Scholar
[26] 杨芳, 李熠鑫, 陈忠平, 顾宁 2009 科学通报 54 1181
Yang F, Li Y X, Chen Z P, Gu N 2009 Chin. Sci. Bull. 54 1181
[27] 沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar
Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar
-
-
[1] He W, Yang F, Wu Y H, Wen S, Chen P, Zhang Y, Gu N 2012 Mater. Lett. 68 64Google Scholar
[2] Porter T R, Feinstein S B, Ten Cate F J, Van den Bosch A E 2020 Ultrasound Med. Biol. 46 1071Google Scholar
[3] Stride E, Porter C, Prieto A G, Pankhurs Q 2009 Ultrasound Med. Biol. 35 861Google Scholar
[4] Dimcevski G, Kotopoulis S, Bjnes T, Hoem D 2016 J. Controlled Release 243 172Google Scholar
[5] Duan L, Yang F, Song L N, Fang K,Tian J L, Liang Y J, Li M X, Xu N, Chen Z D, Zhang Y, Gu N 2015 Soft Matter 11 5492Google Scholar
[6] Cho E, Chung S K, Rhee K 2015 Ultrasonics 62 66Google Scholar
[7] Hyun S M, Sejin S, Dong G Y, Tae W L, Jangwook L, Sangmin L, Ji Y Y, Jaeyoung L, Moon H H, Jae H P, Sun H K, Kuiwon C, Kinam P, Kwangmeyung K, Ick C K 2016 Biomaterials 108 57Google Scholar
[8] Gao Y, Chan C U, Gu Q S, Lin X D, Zhang W C, David Yeo C L, Astrid M A, Manish A, Mark Chong S K, Shi P, Claus D O and Xu C J 2016 NPG. Asia Mater. 8 e260Google Scholar
[9] Zhou T, Cai W B, Yang H L, Zhang H Z, Hao M H, Yuan L J, Liu J, Zhang L, Yang Y L, Liu X, Deng J L, Zhao P, Yang G D, Duan Y Y 2018 J. Controlled Release 276 113Google Scholar
[10] Sciallero C, Grishenkov D, Kothapalli S V, Oddo L, Trucco A 2013 J. Acoust. Soc. Am. 134 3918Google Scholar
[11] Gu Y Y, Chen C Y, Tu J, Guo X S, Wu H Y, Zhang D 2016 Ultrason. Sonochem. 29 309Google Scholar
[12] Marlies O, Valeria G, Jeroen S, Benjamin D, Nico D J, Detlef L, Michel V 2010 Ultrasound Med. Biol. 36 2080Google Scholar
[13] Mulvana H, Eckersley R J, Tang M X, Pankhurst Q, Stride E 2012 Ultrasound Med. Biol. 38 864Google Scholar
[14] Behnia S, Mobadersani F, Yahyavi M, Rezavand A 2013 Nonlinear Dyn. 74 559Google Scholar
[15] Hongray T, Ashok B, Balakrishnan J 2015 Pramana 84 517Google Scholar
[16] Shi J, Yang D S, Shi S G, Hu B, Zhang H Y, Hu S Y 2016 Chin. Phys. B 25 024304Google Scholar
[17] Church C C 1995 J. Acoust. Soc. Am. 97 1510Google Scholar
[18] Beguin E, Bau L, Shrivastava S, Stride E 2019 ACS Appl. Mater. Interfaces 11 1829Google Scholar
[19] Malvar S, Gontijo R G, Cunha F R 2018 J. Eng. Math. 108 143Google Scholar
[20] 莫润阳, 吴临燕, 詹思楠, 张引红 2015 物理学报 64 124301Google Scholar
Mo R Y, Wu L Y, Zhan S N, Zhang Y H 2015 Acta Phys. Sin. 64 124301Google Scholar
[21] Zhang D, Guo G P, Lu L, Yin L L, Tu J, Guo X S, Xu D, Wu J R 2014 Phys. Med. Biol. 59 6729Google Scholar
[22] Hosseini S M, Ghasemi E, Fazlali A, Henneke E 2012 J. Nanopart. Res. 14 858Google Scholar
[23] 陈伟中 2014 声空化物理 (北京 科学出版社) 第415−417页
Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) pp415−417 (in Chinese)
[24] Doinikov A, Dayton P A 2007 J. Acoust. Soc. Am. 121 3331Google Scholar
[25] Sijl J, Dollet B, Overvelde M, Garbinet V, Rozendal T, De Jong N, Lohse De, Versluis M 2010 J. Acoust. Soc. Am. 128 3239Google Scholar
[26] 杨芳, 李熠鑫, 陈忠平, 顾宁 2009 科学通报 54 1181
Yang F, Li Y X, Chen Z P, Gu N 2009 Chin. Sci. Bull. 54 1181
[27] 沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar
Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar
Catalog
Metrics
- Abstract views: 5078
- PDF Downloads: 68
- Cited By: 0