Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of salt concentrations and pore surface structure on the water flow through rock nanopores

Yin Yu-Ming Zhao Ling-Ling

Citation:

Effects of salt concentrations and pore surface structure on the water flow through rock nanopores

Yin Yu-Ming, Zhao Ling-Ling
PDF
HTML
Get Citation
  • The surface dissolution of rock nanopores, caused by the acidic environment, increases the salt concentration of water solution flowing in the nanopores, thereby destroying the surface structure of the rock, which can be found in CO2 geological sequestration and crude oil and shale gas exploration. In this paper, the molecular dynamics method is adopted to study the flow characteristics of water solution in the forsterite (Mg2SiO4) slit nanopores, by which the effects of salt concentration and structure destruction of pore surface on the velocity profiles of water solution confined in nanopores are systematically analyzed. The hydrogen bond density, radial distribution function (RDF) and water density distribution are calculated to explain the changes in viscosity, velocity profiles and interaction between water and nanopore surface. The results show that as the salt concentration increases, the water solution flow in the rock nanopore obeys the Hagen-Poiseuille equation, and the velocity profiles of water solution remain parabolic shape. However, the hydrogen bond network among water molecules becomes denser with salt concentration increasing, which can account for the linear increase in the viscosity of water solution. Besides, the higher salt concentration gives rise to the larger water flow resistance from the pore surface. As a result, with the salt concentration increasing, the maximum of water velocity decreases and the curvature radius of the parabolic velocity profile curve becomes bigger. Moreover, the surface structure destruction in rock nanopores changes the roughness of surface in the flow channel, which enhances the attraction of nanopore surface to H2O. As the structure destruction of nanopore surface deteriorates, the water density near the rough surface moves upward, whereas the velocity of water near the rough surface declines obviously. Interestingly, when the degree of surface structure destruction reaches 50%, a significant negative boundary slipping near the rough surface appears.
      Corresponding author: Zhao Ling-Ling, zhao_lingling@seu.edu.cn
    [1]

    Schrag D P J 2007 Science 315 812Google Scholar

    [2]

    Liu B, Qi C, Zhao X, Teng G, Zhao L, Zheng H, Zhan K, Shi J 2018 J. Phys. Chem. C 122 26671Google Scholar

    [3]

    Cunningham A B, Gerlach R, Spangler L, Mitchell A C 2009 Energy Procedia. 1 3245Google Scholar

    [4]

    Pournik M, Nasr-El-Din H A, Mahmoud M A 2011 SPE Prod. Oper. 26 18

    [5]

    Li Z, Xu Y, Yang L, Guo J, Chen J J 2016 Aust. J. Earth. Sci. 63 503Google Scholar

    [6]

    Black J R, Carroll S A, Haese R R 2015 Chem. Geol. 399 134Google Scholar

    [7]

    黄桥高, 潘光, 宋保维 2014 物理学报 63 054701Google Scholar

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701Google Scholar

    [8]

    葛宋, 陈民 2013 工程热物理学报 34 1527

    Ge S, Chen M 2013 J. Eng. Therm. 34 1527

    [9]

    杨峰, 宁正福, 胡昌蓬, 王波, 彭凯, 刘慧卿 2013 石油学报 34 301Google Scholar

    Yang F, Ning Z F, Hu C P, Wang B, Peng K, Liu H Q 2013 Acta Petrol. Sin. 34 301Google Scholar

    [10]

    Eijkel J C, Van Den Berg A J M 2005 Microfluid. Nanofluid. 1 249Google Scholar

    [11]

    Karniadakis G, Beskok A, Aluru N 2006 Microflows and Nanoflows: Fundamentals and Simulation (Vol. 29) (Berlin: Springer Science & Business Media) pp13–15

    [12]

    Wang S, Javadpour F, Feng Q H 2016 Fuel. 181 741Google Scholar

    [13]

    Ho T A, Striolo A 2015 AIChE J. 61 2993Google Scholar

    [14]

    Marcus Y J 2009 Chem. Rev. 109 1346Google Scholar

    [15]

    Ma J, Li K, Li Z, Qiu Y, Si W, Ge Y, Sha J, Liu L, Xie X, Yi H 2019 J. Am. Chem. Soc. 141 4264Google Scholar

    [16]

    van der Vegt N F, Haldrup K, Roke S, Zheng J, Lund M, Bakker H 2016 Chem. Rev. 116 7626Google Scholar

    [17]

    Aryal D, Ganesan V 2018 ACS Macro Lett. 7 739Google Scholar

    [18]

    杨倩 2018 博士学位论文 (成都: 西南交通大学)

    Yang Q 2018 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [19]

    张烨, 张冉, 常青, 李烨 2019 物理学报 68 124702Google Scholar

    Zhang Y, Zhang R, Chang Q, Li H, 2019 Acta Phys. Sin. 68 124702Google Scholar

    [20]

    Rahmatipour H, Azimian A-R, Atlaschian O 2017 Physica A 465 159Google Scholar

    [21]

    梅涛, 陈独秀, 杨历, 王坤, 苗瑞灿 2019 物理学报 68 094701Google Scholar

    Mei T, Chen D X, Yang L, Wang K, Miao C C, 2019 Acta Phys. Sin. 68 094701Google Scholar

    [22]

    南怡伶, 孔宪, 李继鹏, 卢滇楠 2017 化工学报 68 1786

    Nan Y L, Kong X, Li J P, Lu D N 2017 J. Chem. Ind. Eng. (China) 68 1786

    [23]

    王胜, 徐进良, 张龙艳 2017 物理学报 66 204704Google Scholar

    Wang S, Xu J L, Zhang L Y 2017 Acta Phys. Sin. 66 204704Google Scholar

    [24]

    张冉, 谢文佳, 常青 2018 物理学报 67 084701Google Scholar

    Zhang R, Xie W J, Chang Q 2018 Acta Phys. Sin. 67 084701Google Scholar

    [25]

    Markesteijn A, Hartkamp R, Luding S, Westerweel J 2012 J. Chem. Phys 136 134104Google Scholar

    [26]

    Yoshida H, Bocquet L 2016 J. Chem. Phys 144 234701Google Scholar

    [27]

    Xu J, Zhu C, Wang Y, Li H, Huang Y, Shen Y, Francisco J S, Zeng X C, Meng S 2019 Nano Res. 12 587Google Scholar

    [28]

    Nair R, Wu H, Jayaram P, Grigorieva I, Geim A 2012 Science 335 442Google Scholar

    [29]

    Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X 2013 Nat. Commun. 4 2979Google Scholar

    [30]

    Zhao L L, Ji J, Tao L, Lin S C 2016 Langmuir. 32 9188Google Scholar

    [31]

    Ross D J K, Bustin R M 2009 Mar. Pet. Geol. 26 916Google Scholar

    [32]

    Kerisit S, Weare J H, Felmy A R 2012 Geochim. Cosmochim. Acta 84 137Google Scholar

    [33]

    Wang J, Kalinichev A G, Kirkpatrick R J 2006 Geochim. Cosmochim. Acta 70 562Google Scholar

    [34]

    Cygan R T, Liang J-J, Kalinichev A G 2004 J. Phys. Chem. B. 108 1255Google Scholar

    [35]

    Yuet P K, Blankschtein D 2010 J. Phys. Chem. B 114 13786Google Scholar

    [36]

    Zhao L, Lin S, Mendenhall J D, Yuet P K, Blankschtein D 2011 J. Phys. Chem. B 115 6076Google Scholar

    [37]

    Verlet L 1967 Phys. Rev. 159 98Google Scholar

    [38]

    Delhommelle J, Philippe M 2001 Mol. Phys. 99 619Google Scholar

    [39]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089Google Scholar

    [40]

    FrantzDale B, Plimpton S J, Shephard M S 2010 Eng. Comput. 26 205Google Scholar

    [41]

    Alvarez N J, Uguz A K 2013 Phys. Fluids 25 7336

    [42]

    Span R, Wagner W J 1996 J. Phys. Chem. Ref. Data 25 1509Google Scholar

    [43]

    Liu L, Du J G, Zhao J J, Liu H, Gao H L, Chen Y X 2009 Phys. Earth Planet. 176 89Google Scholar

  • 图 1  纳米级镁橄榄石孔隙内水溶液流动的模拟系统图

    Figure 1.  The simulation system of water solution flow in the forsterite nanopore.

    图 2  Mg2SiO4晶体拉伸的分子模拟应力-应变曲线

    Figure 2.  The stress-strain curves of the Mg2SiO4 crystal stretching obtained using molecular dynamics simulation.

    图 3  (a)纯水和MgCl2含盐水中以0.32 nm半径的水合壳结构示意图; (b)不同MgCl2浓度下纳米级镁橄榄石孔隙内纯水和含盐水的+Z向速度分布

    Figure 3.  (a) Snapshots for the solvation shell with a radius of 0.4 nm in pure water and MgCl2 solution, (b) the velocity profiles in the +Z direction of water solution in the forsterite nanopore with different MgCl2 concentrations.

    图 4  (a)不同MgCl2浓度含盐水的黏度及其内部氢键密度; (b)不同MgCl2浓度含盐水Ow-Ow原子对的径向分布函数

    Figure 4.  (a) The viscosity and hydrogen bond density of water solution with different MgCl2 concentrations; (b) the radial distribution function of Ow-Ow near the wall of nanopores.

    图 5  Mg-Ow原子对的径向分布函数

    Figure 5.  The radial distribution function of Mg-Ow near the wall of nanopores.

    图 6  不同表面结构破坏程度的纳米级镁橄榄石孔隙示意图

    Figure 6.  The schematic of forsterite nanopores with various degrees of surface structure destruction.

    图 7  不同表面结构破坏程度下纳米级镁橄榄石孔隙内水的+Z向速度分布

    Figure 7.  The velocity profiles in the +Z direction of water solution in forsterite nanopores with various degrees of surface structure destruction.

    图 8  不同表面结构破坏程度下纳米级镁橄榄石孔隙内水溶液的密度分布

    Figure 8.  The density profiles of water solution in forsterite nanopores with various degrees of surface structure destruction.

  • [1]

    Schrag D P J 2007 Science 315 812Google Scholar

    [2]

    Liu B, Qi C, Zhao X, Teng G, Zhao L, Zheng H, Zhan K, Shi J 2018 J. Phys. Chem. C 122 26671Google Scholar

    [3]

    Cunningham A B, Gerlach R, Spangler L, Mitchell A C 2009 Energy Procedia. 1 3245Google Scholar

    [4]

    Pournik M, Nasr-El-Din H A, Mahmoud M A 2011 SPE Prod. Oper. 26 18

    [5]

    Li Z, Xu Y, Yang L, Guo J, Chen J J 2016 Aust. J. Earth. Sci. 63 503Google Scholar

    [6]

    Black J R, Carroll S A, Haese R R 2015 Chem. Geol. 399 134Google Scholar

    [7]

    黄桥高, 潘光, 宋保维 2014 物理学报 63 054701Google Scholar

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701Google Scholar

    [8]

    葛宋, 陈民 2013 工程热物理学报 34 1527

    Ge S, Chen M 2013 J. Eng. Therm. 34 1527

    [9]

    杨峰, 宁正福, 胡昌蓬, 王波, 彭凯, 刘慧卿 2013 石油学报 34 301Google Scholar

    Yang F, Ning Z F, Hu C P, Wang B, Peng K, Liu H Q 2013 Acta Petrol. Sin. 34 301Google Scholar

    [10]

    Eijkel J C, Van Den Berg A J M 2005 Microfluid. Nanofluid. 1 249Google Scholar

    [11]

    Karniadakis G, Beskok A, Aluru N 2006 Microflows and Nanoflows: Fundamentals and Simulation (Vol. 29) (Berlin: Springer Science & Business Media) pp13–15

    [12]

    Wang S, Javadpour F, Feng Q H 2016 Fuel. 181 741Google Scholar

    [13]

    Ho T A, Striolo A 2015 AIChE J. 61 2993Google Scholar

    [14]

    Marcus Y J 2009 Chem. Rev. 109 1346Google Scholar

    [15]

    Ma J, Li K, Li Z, Qiu Y, Si W, Ge Y, Sha J, Liu L, Xie X, Yi H 2019 J. Am. Chem. Soc. 141 4264Google Scholar

    [16]

    van der Vegt N F, Haldrup K, Roke S, Zheng J, Lund M, Bakker H 2016 Chem. Rev. 116 7626Google Scholar

    [17]

    Aryal D, Ganesan V 2018 ACS Macro Lett. 7 739Google Scholar

    [18]

    杨倩 2018 博士学位论文 (成都: 西南交通大学)

    Yang Q 2018 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)

    [19]

    张烨, 张冉, 常青, 李烨 2019 物理学报 68 124702Google Scholar

    Zhang Y, Zhang R, Chang Q, Li H, 2019 Acta Phys. Sin. 68 124702Google Scholar

    [20]

    Rahmatipour H, Azimian A-R, Atlaschian O 2017 Physica A 465 159Google Scholar

    [21]

    梅涛, 陈独秀, 杨历, 王坤, 苗瑞灿 2019 物理学报 68 094701Google Scholar

    Mei T, Chen D X, Yang L, Wang K, Miao C C, 2019 Acta Phys. Sin. 68 094701Google Scholar

    [22]

    南怡伶, 孔宪, 李继鹏, 卢滇楠 2017 化工学报 68 1786

    Nan Y L, Kong X, Li J P, Lu D N 2017 J. Chem. Ind. Eng. (China) 68 1786

    [23]

    王胜, 徐进良, 张龙艳 2017 物理学报 66 204704Google Scholar

    Wang S, Xu J L, Zhang L Y 2017 Acta Phys. Sin. 66 204704Google Scholar

    [24]

    张冉, 谢文佳, 常青 2018 物理学报 67 084701Google Scholar

    Zhang R, Xie W J, Chang Q 2018 Acta Phys. Sin. 67 084701Google Scholar

    [25]

    Markesteijn A, Hartkamp R, Luding S, Westerweel J 2012 J. Chem. Phys 136 134104Google Scholar

    [26]

    Yoshida H, Bocquet L 2016 J. Chem. Phys 144 234701Google Scholar

    [27]

    Xu J, Zhu C, Wang Y, Li H, Huang Y, Shen Y, Francisco J S, Zeng X C, Meng S 2019 Nano Res. 12 587Google Scholar

    [28]

    Nair R, Wu H, Jayaram P, Grigorieva I, Geim A 2012 Science 335 442Google Scholar

    [29]

    Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X 2013 Nat. Commun. 4 2979Google Scholar

    [30]

    Zhao L L, Ji J, Tao L, Lin S C 2016 Langmuir. 32 9188Google Scholar

    [31]

    Ross D J K, Bustin R M 2009 Mar. Pet. Geol. 26 916Google Scholar

    [32]

    Kerisit S, Weare J H, Felmy A R 2012 Geochim. Cosmochim. Acta 84 137Google Scholar

    [33]

    Wang J, Kalinichev A G, Kirkpatrick R J 2006 Geochim. Cosmochim. Acta 70 562Google Scholar

    [34]

    Cygan R T, Liang J-J, Kalinichev A G 2004 J. Phys. Chem. B. 108 1255Google Scholar

    [35]

    Yuet P K, Blankschtein D 2010 J. Phys. Chem. B 114 13786Google Scholar

    [36]

    Zhao L, Lin S, Mendenhall J D, Yuet P K, Blankschtein D 2011 J. Phys. Chem. B 115 6076Google Scholar

    [37]

    Verlet L 1967 Phys. Rev. 159 98Google Scholar

    [38]

    Delhommelle J, Philippe M 2001 Mol. Phys. 99 619Google Scholar

    [39]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089Google Scholar

    [40]

    FrantzDale B, Plimpton S J, Shephard M S 2010 Eng. Comput. 26 205Google Scholar

    [41]

    Alvarez N J, Uguz A K 2013 Phys. Fluids 25 7336

    [42]

    Span R, Wagner W J 1996 J. Phys. Chem. Ref. Data 25 1509Google Scholar

    [43]

    Liu L, Du J G, Zhao J J, Liu H, Gao H L, Chen Y X 2009 Phys. Earth Planet. 176 89Google Scholar

  • [1] Xing He-Wei, Chen Zhan-Xiu, Yang Li, Su Yao, Li Yuan-Hua, Huhe Cang. Molecular dynamics simulation of effect of non-condensable gases on heat transfer of water molecule flow in nanochannels. Acta Physica Sinica, 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [2] Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian. Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets. Acta Physica Sinica, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [3] Yang Quan, Ma Li, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning. Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface. Acta Physica Sinica, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [4] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [6] Ke Chuan, Zhao Cheng-Li, Gou Fu-Jun, Zhao Yong. Molecular dynamics study of interaction between the H atoms and Si surface. Acta Physica Sinica, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [7] Xiao Hong-Xing, Long Chong-Sheng. Molecular dynamics simulation of surface energy of low miller index surfaces in UO2. Acta Physica Sinica, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [8] Zhao Cheng-Li, Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [9] He Ping-Ni, Ning Jian-Ping, Qin You-Min, Zhao Cheng-Li, Gou Fu-Jun. Molecular dynamics simulations of low-energy Clatoms etching Si(100) surface. Acta Physica Sinica, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [10] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [11] Liu Mei-Lin, Zhang Zong-Ning, Li Wei, Zhao Qian, Qi Yang, Zhang Lin. Deposition process of MgO thin film on MgO(001) surface simulated by molecular dynamics. Acta Physica Sinica, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [12] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [13] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [14] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [15] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. Molecular dynamics simulation of Gd adatom diffusion on Cu(110) surface. Acta Physica Sinica, 2003, 52(9): 2254-2258. doi: 10.7498/aps.52.2254
    [16] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [17] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [18] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [19] Zhang Chao, Lv Hai-Feng, Zhang Qing-Yu. . Acta Physica Sinica, 2002, 51(10): 2329-2334. doi: 10.7498/aps.51.2329
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  6814
  • PDF Downloads:  94
  • Cited By: 0
Publishing process
  • Received Date:  13 November 2019
  • Accepted Date:  23 December 2019
  • Published Online:  05 March 2020

/

返回文章
返回