-
In this study, molecular dynamics simulation method is used to investigate the interactions of Cl continuously bombarding a crystalline Si (100) surface in an incident energy range of 0.3—10 eV.The surface temperature is set to be 300 K for all the incident energies. The improved Tersoff-Brenner type potential is employed.The simulation results show that a Cl-rich reaction layer is formed on the surface due to Cl continuously bombarding. The SiCl group is the predominant species in the reaction layer.The thickness of the reaction layer increases with incident energy. The etching ratio increases with incident energy increasing. The main etching product is SiCl4 when the incident energies are 0.3, 1 and 5 eV, but it is SiClx(x<4) when the incident enery is 10 eV.With the incident energy increasing, the main etching mechanism changes from chemical etching to physical etching.
-
Keywords:
- molecular dynamics /
- Cl etching Si /
- molecular dynamics simulation /
- MEMS
[1] Janseny H, Gardeniers H, Boer M D, Miko, Elwenspoek, Fluitman J 1996 J. Micromech. Microeng. 6 14
[2] Athavale S D, Economou D J 1996 J. Vac. Sci. Technol. B 14 3702
[3] Dai Z L, Mao M, Wang Y N 2006 Physics 35 698 (in Chinese) [戴忠玲、毛 明、王友年 2006 物理 35 698]
[4] Yugo O, Ono K 2008 J. Vac. Sci. Technol. B 26 1425
[5] Teraoka, Yuden, Nishiyama, Iwao 1993 Appl. Phys. Lett. 63 3355
[6] Rangelow I W, Löschner H 1995 J. Vac. Sci. Technol. B 13 2394
[7] Aldao C M, Agrawal A, Butera R E, Weaver J H 2009 Phys. Rev. B 79 125303
[8] Lu D J, Jiang Z D 2007 Chin. J. Vac. Sci. Technol. 27 25 (in Chinese) [卢德江、蒋庄德 2007 真空科学与技术学报 27 25]
[9] Rutkūnien , Grigonis A, R za A, Babonas J G, Jotautis A 2003 Physics and Chemistry of Solid State 4 407
[10] Samukawa S, Jinnai B, Oda F, Morimoto Y 2007 Jpn. J. Appl. Phys 46 L64
[11] Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 76
[12] Kolfschoten A W, Haring R A, Haring A, Vries A E 1984 J. Appl. Phys. 55 3813
[13] Agrawal A, Butera R E, Weaver J H 2007 Phys. Rev. Lett. 98 136104
[14] Materer N, Goodman R S, Leone S R 2000 J. Phys. Chem. B 104 3261
[15] Ohta H, Hamaguchi S 2001 J. Chem. Phys. 115 6679
[16] Hanson D E, Kress J D, Voter A F 1999 J. Chem. Phys. 110 5983
[17] Humbird D, Graves D B 2004 J. Appl. Phys. 96 791
[18] Barone, Robinson, Graves 1996 IEEE T. Plasma. Sci. 24 77
[19] Ohta H, Hamaguchi S 2001 J. Vac. Sci. Technol. A 19 2373
[20] Yan C, Lü H F, Zhang C, Zhang Q Y 2006 Acta Phys. Sin. 55 1351 (in Chinese) [严 超、吕海峰、张 超、张庆渝 2006 物理学报 55 1351]
[21] Jia Z M, Yang G Q, Chen Z N, Liu X H, Zhou S C 1994 Acta Phys. Sin. 43 1809 (in Chinese) [郏正明、杨根庆、程兆年、柳襄怀、邹世昌 1994 物理学报 43 1809]
[22] Dai Y B, Shen H S, Zhang Z M, He X C, Hu X J, Sun F H, Xin H W 2001 Acta Phys. Sin. 50 244 (in Chinese) [戴永兵、沈荷生、张志明、何贤昶、胡晓君、孙方宏、莘海维 2001 物理学报 50 244]
[23] Hanson D E, Voter A F, Kress J D 1997 J. Appl. Phys. 82 3552
[24] Gou F, Kleyn A W, Gleeson M A 2008 Int. Rev. Phys. Chem. 27 229
[25] Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637
[26] Humbird D, Graves D B 2004 J. Chem. Phys. 120 2405
[27] Abrams C F, Graves D B 1999 J. Appl. Phys. 86 5938
[28] Berendsen H J C, Postma J P M, Gunsteren W F, DiNola A, Haak J R 1984 J. Chem. Phys. 81 3684
[29] Herman I P, Donnelly V M, Cheng C C, Guinn K V 1996 Jpn. J. Appl. Phys. 35 2410
-
[1] Janseny H, Gardeniers H, Boer M D, Miko, Elwenspoek, Fluitman J 1996 J. Micromech. Microeng. 6 14
[2] Athavale S D, Economou D J 1996 J. Vac. Sci. Technol. B 14 3702
[3] Dai Z L, Mao M, Wang Y N 2006 Physics 35 698 (in Chinese) [戴忠玲、毛 明、王友年 2006 物理 35 698]
[4] Yugo O, Ono K 2008 J. Vac. Sci. Technol. B 26 1425
[5] Teraoka, Yuden, Nishiyama, Iwao 1993 Appl. Phys. Lett. 63 3355
[6] Rangelow I W, Löschner H 1995 J. Vac. Sci. Technol. B 13 2394
[7] Aldao C M, Agrawal A, Butera R E, Weaver J H 2009 Phys. Rev. B 79 125303
[8] Lu D J, Jiang Z D 2007 Chin. J. Vac. Sci. Technol. 27 25 (in Chinese) [卢德江、蒋庄德 2007 真空科学与技术学报 27 25]
[9] Rutkūnien , Grigonis A, R za A, Babonas J G, Jotautis A 2003 Physics and Chemistry of Solid State 4 407
[10] Samukawa S, Jinnai B, Oda F, Morimoto Y 2007 Jpn. J. Appl. Phys 46 L64
[11] Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 76
[12] Kolfschoten A W, Haring R A, Haring A, Vries A E 1984 J. Appl. Phys. 55 3813
[13] Agrawal A, Butera R E, Weaver J H 2007 Phys. Rev. Lett. 98 136104
[14] Materer N, Goodman R S, Leone S R 2000 J. Phys. Chem. B 104 3261
[15] Ohta H, Hamaguchi S 2001 J. Chem. Phys. 115 6679
[16] Hanson D E, Kress J D, Voter A F 1999 J. Chem. Phys. 110 5983
[17] Humbird D, Graves D B 2004 J. Appl. Phys. 96 791
[18] Barone, Robinson, Graves 1996 IEEE T. Plasma. Sci. 24 77
[19] Ohta H, Hamaguchi S 2001 J. Vac. Sci. Technol. A 19 2373
[20] Yan C, Lü H F, Zhang C, Zhang Q Y 2006 Acta Phys. Sin. 55 1351 (in Chinese) [严 超、吕海峰、张 超、张庆渝 2006 物理学报 55 1351]
[21] Jia Z M, Yang G Q, Chen Z N, Liu X H, Zhou S C 1994 Acta Phys. Sin. 43 1809 (in Chinese) [郏正明、杨根庆、程兆年、柳襄怀、邹世昌 1994 物理学报 43 1809]
[22] Dai Y B, Shen H S, Zhang Z M, He X C, Hu X J, Sun F H, Xin H W 2001 Acta Phys. Sin. 50 244 (in Chinese) [戴永兵、沈荷生、张志明、何贤昶、胡晓君、孙方宏、莘海维 2001 物理学报 50 244]
[23] Hanson D E, Voter A F, Kress J D 1997 J. Appl. Phys. 82 3552
[24] Gou F, Kleyn A W, Gleeson M A 2008 Int. Rev. Phys. Chem. 27 229
[25] Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637
[26] Humbird D, Graves D B 2004 J. Chem. Phys. 120 2405
[27] Abrams C F, Graves D B 1999 J. Appl. Phys. 86 5938
[28] Berendsen H J C, Postma J P M, Gunsteren W F, DiNola A, Haak J R 1984 J. Chem. Phys. 81 3684
[29] Herman I P, Donnelly V M, Cheng C C, Guinn K V 1996 Jpn. J. Appl. Phys. 35 2410
Catalog
Metrics
- Abstract views: 9595
- PDF Downloads: 846
- Cited By: 0