Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear pulse compression technique based on in multi-pass plano-cancave cavity

Li Pin-Bin Teng Hao Tian Wen-Long Huang Zhen-Wen Zhu Jiang-Feng Zhong Shi-Yang Yun Chen-Xia Liu Wen-Jun Wei Zhi-Yi

Citation:

Nonlinear pulse compression technique based on in multi-pass plano-cancave cavity

Li Pin-Bin, Teng Hao, Tian Wen-Long, Huang Zhen-Wen, Zhu Jiang-Feng, Zhong Shi-Yang, Yun Chen-Xia, Liu Wen-Jun, Wei Zhi-Yi
PDF
HTML
Get Citation
  • Ultrafast femtosecond laser system with hundreds of microjoules of energy, operating at a repetition frequency of several kilohertz, has very important applications in many fields such as medicine, mid-infrared laser generation, industrial processing, and vibrational spectroscopy. The chirped pulse amplification technique provides a feasible path to obtain light sources with those parameters. However, the use of chirped pulse amplification increases the technical complexity and cost of the laser system. Recently, the proposal of a multi-pass cell (MPC) nonlinear pulse compression technique has enabled us to obtain high power ultrafast femtosecond pulses with reduced technical complexity and cost. The device requires only two concave mirrors and a nonlinear medium in between. In the past seven years, the multi-pass cell nonlinear pulse compression technique has made great progress, making it possible to obtain ultrashort pulses with average power of more than a few kW and peak power of tens to hundreds of TW.In this work, we achieve nonlinear pulse compression of a 100-W picosecond laser by using an improved nonlinear pulse compression scheme that combines a hybrid of a plano-cancave multi-pass cell and multi-thin-plate. Using fused silica plates in plano-cancave cavity, the spectral bandwidth (FWHM) of input picosecond laser is broadened from 0.24 nm to 4.8 nm due to self-phase modulation effect, the pulse is compressed to 483 fs by dispersion compensation using grating pairs, which corresponds to a compression factor of 22, and the final output power of 44.2 W is obtained. Compared with traditional MPC, the plano-cancave cavity scheme we developed is a very promising solution for nonlinear compression due to its compactness, more stability and large compression ratio.
      Corresponding author: Teng Hao, hteng@iphy.ac.cn ; Zhu Jiang-Feng, jfzhu@xidian.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1604200) and the National Natural Science Foundation of China (Grant No. 12034020).
    [1]

    Mourou G 2019 Rev. Modern Phys. 91 030501Google Scholar

    [2]

    Fattahi H, Barros H G, Gorjan M, Nubbemeyer T, Alsaif B, Teisset C Y, Schultze M, Prinz S, Haefner M, Ueffing M, Alismail A, Vámos L, Schwarz A, Pronin O, Brons J, Geng X T, Arisholm G, Ciappina M, Yakovlev V S, Kim D E, Azzeer A M, Karpowicz N, Sutter D, Major Z, Metzger T, Krausz F 2014 Optica 1 45Google Scholar

    [3]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [4]

    Brabec T, Krausz F 2000 Rev. Modern Phys. 72 545Google Scholar

    [5]

    Kärtner F X, Morgner U, Ell R, Ippen E P, Fujimoto J G, Scheuer V, Angelow, Tschudi T 2001 The 4th Pacific Rim Conference on Lasers and Electro-Optics Chiba, Japan, July 15–19, 2001 pTuJ3_1

    [6]

    Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang Z Y, Huang P, Cao P, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z 2018 Opt. Lett. 43 5681Google Scholar

    [7]

    Bagnoud V, Salin F 2000 Appl. Phys. B 70 S165Google Scholar

    [8]

    Sun D, Gao J, Wang W, Du X, Gao Y X, Gao Z C, Liang X Y 2021 IEEE Photonics J. 13 1Google Scholar

    [9]

    Schneider W, Ryabov A, Lombosi C S, Metzger T, Major Z S, Fülöp Z A, Baum P 2014 Opt. Lett. 39 6604Google Scholar

    [10]

    Wang D, Du Y L, Wu Y C, Xu L, An X C, Cao L Q, Li M, Wang J T, Sahng J L, Zhou T J, Tong LX, Gao Q S, Zhang K, Tang C, Zhu R H 2018 Opt. Lett. 43 3838Google Scholar

    [11]

    Gao Q S, Zhou T J, Shang J L, Wang D, Li M, Wu Y C, Wang J T, Wang Y N, Xu L, Du Y L, Chen X M, Zhang K, Tang C 2020 High Power and Particle Beams 32 121009Google Scholar

    [12]

    Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe P 2010 Opt. Lett. 35 4169Google Scholar

    [13]

    Veselis L, Bartulevicius T, Madeikis K, Michailovas A, Rusteika N 2018 Opt. Express 26 31873Google Scholar

    [14]

    Knall J M, Engholm M, Boilard T, Bernier M, Digonnet M J 2021 Phys. Rev. Lett. 127 013903Google Scholar

    [15]

    高清松, 胡浩, 裴正平, 童立新, 周唐建, 唐淳 2012 中国激光 39 7

    Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chin. J. Lasers 39 7

    [16]

    Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A 2020 Opt. Express 28 11415Google Scholar

    [17]

    王海林, 董静, 刘贺言, 郝婧婕, 朱晓, 张金伟 2021 光子学报 50 117Google Scholar

    Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117Google Scholar

    [18]

    Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F 2017 Opt. Lett. 42 1381Google Scholar

    [19]

    董雪岩, 李平雪, 李舜, 王婷婷, 杨敏 2021 中国激光 48 41Google Scholar

    Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chin. J. Lasers 48 41Google Scholar

    [20]

    Khazanov E A 2022 Quantum Electron. 52 208Google Scholar

    [21]

    Nagy T, Simon P, Veisz L 2021 Adv. Phys. X 6 1845795Google Scholar

    [22]

    Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M 2022 Optica 9 197Google Scholar

    [23]

    Jocher C, Eidam T, Hädrich S, Limpert J, Tünnermann A 2012 Opt. Lett. 37 4407Google Scholar

    [24]

    Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar

    [25]

    Hädrich S, Krebs M, Hoffmann A, Klenke A, Rothhardt J, Limpert J, Tünnermann A 2015 Light Sci. Appl. 4 e320Google Scholar

    [26]

    Rothhardt J, Hädrich S, Carstens H, Herrick N, Demmler S, Limpert J, Tünnermann A 2011 Opt. Lett. 36 4605Google Scholar

    [27]

    Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523Google Scholar

    [28]

    Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P 2016 Opt. Lett. 41 4511Google Scholar

    [29]

    Grebing C, Müller M, Buldt J, Stark H, Limpert J 2020 Opt. Lett. 45 6250Google Scholar

    [30]

    Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S 2021 Opt. Lett. 46 929Google Scholar

    [31]

    Weitenberg J, Saule T, Schulte J, Russbueldt P 2017 IEEE J. Quantum Electron. 53 1Google Scholar

    [32]

    Raab A K, Seidel M, Guo C, Sytcevich I, Arisholm G, Anne L H, Cord L A, Viotti A L 2022 Opt. Lett. 47 5084Google Scholar

    [33]

    Seidel M, Balla P, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M 2022 Ultraf. Sci. 17 9754919Google Scholar

    [34]

    Song J J, Wang Z H, Wang X Z, Lü R C, Teng H, Zhu J F, Wei Z Y 2021 Chin. Opt. Lett. 19 093201Google Scholar

    [35]

    Lavenu L, Natile M, Guichard F, Zaouter Y, Delen X, Hanna M, Mottay E, Georges P 2018 Opt. Lett. 43 2252Google Scholar

    [36]

    Viotti A L, Alisauskas S, Tünnermann H, Escoto E, Seidel M, Dudde K, Manschwetus B, Hartl I, Christoph M H 2021 Opt. Lett. 46 4686Google Scholar

    [37]

    Russbueldt P, Weitenberg J, Schulte J, Meyer R, Meinhardt C, Hoffmann H D, Poprawe R 2019 Opt. Lett. 44 5222Google Scholar

    [38]

    Rajhans S, Velpula P K, Escoto E, Shalloo R, Farace B, Põder K, Osterhoff J, Leemans W P, Hartl I, Heyl C M 2021 Advanced Solid State Lasers Washington, DC, USA, October 3–7, 2021 paper AW2A.6

    [39]

    Gierschke P, Grebing C, Abdelaal M, Lenski M, Buldt J, Wang Z, Heuermann T, Mueller M, Gebhardt M, Rothhardt J, Limpert J 2022 Opt. Lett. 47 3511.Google Scholar

    [40]

    Balla P, Wahid A B, Sytcevich I, Guo C, Viotti A L, Silletti L, Cartella A, Alisauskas S, Tavakol H, Grosse-Wortmann U, Schönberg A, Seidel M, Trabattoni A, Manschwetus B, Lang T, Calegari F, Couairon A, L’Huillier A, Arnold C L, Hartl I, Heyl C M 2020 Opt. Lett. 45 2572Google Scholar

    [41]

    Viotti A L, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M, Seidel M 2023 Opt. Lett. 48 984Google Scholar

    [42]

    Omar A, Vogel T, Hoffmann M, Saraceno C J 2023 Opt. Lett. 48 1458Google Scholar

    [43]

    Heyl C M, Seidel M, Escoto E, Schönberg A, Carlström S, Arisholm G, Lang T, Hartl I 2022 J. Phys. Photonics 4 014002Google Scholar

    [44]

    Tsai C L, Meyer F, Omar A, Wang Y C, Liang A X, Lu C H, Hoffmann M, Yang S D, Saraceno C J 2019 Opt. Lett. 44 4115Google Scholar

    [45]

    Lavenu L, Natile M, Guichard F, Délen X, Hanna M, Zaouter Y, Georges P 2019 Opt. Express 27 1958Google Scholar

    [46]

    Daniault L, Cheng Z, Kaur J, Hergott J F, Réau F, Tcherbakoff O, Daher N, Délen X, Hanna M, Rodrigo L M 2021 Opt. Lett. 46 5264Google Scholar

  • 图 1  平凹多通腔结构示意图

    Figure 1.  Schematic diagram of plano-cancave multi-pass cavity structure.

    图 2  常规双凹多通腔原理示意图

    Figure 2.  Schematic diagram of conventional double concave multi-pass cavity principle.

    图 3  平凹多通腔原理示意图

    Figure 3.  Schematic diagram of plano-cancave multi-pass cavity principle.

    图 4  常规双凹MPC光斑分布示意图 (a)凹面反射镜1; (b)凹面反射镜2

    Figure 4.  Schematic diagram of conventional double concave MPC spot distribution: (a) Concave mirror 1; (b) concave mirror 2.

    图 5  平凹MPC光斑分布示意图 (a) 凹面反射镜1; (b)平面反射镜2

    Figure 5.  Schematic diagram of plano-cancave MPC spot distribution: (a) Concave mirror 1; (b) plano mirror 2.

    图 6  平凹MPC非线性脉冲压缩装置示意图(HR, 高反镜; L1—L4, 透镜; TG1和TG2, 光栅)

    Figure 6.  Schematic diagram of plano-cancave MPC pulse nonlinear compression device. HR, high reflective mirrors; L1−L4, Lens; TG1 and TG2, transmission gratings.

    图 7  皮秒激光器输出特性 (a)输出光谱; (b)输出脉冲宽度自相关信号

    Figure 7.  Output characteristics picosecond of laser: (a) Output spectrum; (b) autocorrelation signal of output pulse width.

    图 8  MPC展宽前后的光谱示意图

    Figure 8.  Spectral schematic before and after MPC broadening.

    图 9  MPC压缩后的脉冲自相关曲线

    Figure 9.  Measured autocorrelation signal of output pulse after MPC compression.

    图 10  输出光束质量 (a)皮秒激光器输出光束质量; (b) MPC输出光束质量

    Figure 10.  Output beam quality: (a) Picosecond laser output beam quality; (b) MPC output beam quality.

    表 1  单级MPC非线性脉冲压缩技术研究进展

    Table 1.  Progress in single-stage MPC nonlinear pulse compression technique.

    输入功率/W 输入脉宽/fs 重复频率/MHz 输出功率/W 输出脉宽/fs 压缩比 介质 文献
    416 850 10 375 170 5 FS [28]
    95 230 18.5 84 35 6 FS [31]
    34 300 0.2 30 31 10 FS [32]
    112 1240 1 65 39 31 FS [33]
    1.6 12500 0.008 1.23 601 20 FS [34]
    24 275 0.15 24 33 8 Ar [35]
    320 730 0.1 250 56 13 Ar [36]
    550 590 0.5 530 30 19 Ar [37]
    8.6 1200 0.001 7.9 44 27 Ar [38]
    65 138 0.3 51 35 4 Ar [39]
    210 670 0.1 203 134 5 Ar [42]
    DownLoad: CSV
  • [1]

    Mourou G 2019 Rev. Modern Phys. 91 030501Google Scholar

    [2]

    Fattahi H, Barros H G, Gorjan M, Nubbemeyer T, Alsaif B, Teisset C Y, Schultze M, Prinz S, Haefner M, Ueffing M, Alismail A, Vámos L, Schwarz A, Pronin O, Brons J, Geng X T, Arisholm G, Ciappina M, Yakovlev V S, Kim D E, Azzeer A M, Karpowicz N, Sutter D, Major Z, Metzger T, Krausz F 2014 Optica 1 45Google Scholar

    [3]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [4]

    Brabec T, Krausz F 2000 Rev. Modern Phys. 72 545Google Scholar

    [5]

    Kärtner F X, Morgner U, Ell R, Ippen E P, Fujimoto J G, Scheuer V, Angelow, Tschudi T 2001 The 4th Pacific Rim Conference on Lasers and Electro-Optics Chiba, Japan, July 15–19, 2001 pTuJ3_1

    [6]

    Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang Z Y, Huang P, Cao P, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z 2018 Opt. Lett. 43 5681Google Scholar

    [7]

    Bagnoud V, Salin F 2000 Appl. Phys. B 70 S165Google Scholar

    [8]

    Sun D, Gao J, Wang W, Du X, Gao Y X, Gao Z C, Liang X Y 2021 IEEE Photonics J. 13 1Google Scholar

    [9]

    Schneider W, Ryabov A, Lombosi C S, Metzger T, Major Z S, Fülöp Z A, Baum P 2014 Opt. Lett. 39 6604Google Scholar

    [10]

    Wang D, Du Y L, Wu Y C, Xu L, An X C, Cao L Q, Li M, Wang J T, Sahng J L, Zhou T J, Tong LX, Gao Q S, Zhang K, Tang C, Zhu R H 2018 Opt. Lett. 43 3838Google Scholar

    [11]

    Gao Q S, Zhou T J, Shang J L, Wang D, Li M, Wu Y C, Wang J T, Wang Y N, Xu L, Du Y L, Chen X M, Zhang K, Tang C 2020 High Power and Particle Beams 32 121009Google Scholar

    [12]

    Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe P 2010 Opt. Lett. 35 4169Google Scholar

    [13]

    Veselis L, Bartulevicius T, Madeikis K, Michailovas A, Rusteika N 2018 Opt. Express 26 31873Google Scholar

    [14]

    Knall J M, Engholm M, Boilard T, Bernier M, Digonnet M J 2021 Phys. Rev. Lett. 127 013903Google Scholar

    [15]

    高清松, 胡浩, 裴正平, 童立新, 周唐建, 唐淳 2012 中国激光 39 7

    Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chin. J. Lasers 39 7

    [16]

    Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A 2020 Opt. Express 28 11415Google Scholar

    [17]

    王海林, 董静, 刘贺言, 郝婧婕, 朱晓, 张金伟 2021 光子学报 50 117Google Scholar

    Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117Google Scholar

    [18]

    Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F 2017 Opt. Lett. 42 1381Google Scholar

    [19]

    董雪岩, 李平雪, 李舜, 王婷婷, 杨敏 2021 中国激光 48 41Google Scholar

    Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chin. J. Lasers 48 41Google Scholar

    [20]

    Khazanov E A 2022 Quantum Electron. 52 208Google Scholar

    [21]

    Nagy T, Simon P, Veisz L 2021 Adv. Phys. X 6 1845795Google Scholar

    [22]

    Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M 2022 Optica 9 197Google Scholar

    [23]

    Jocher C, Eidam T, Hädrich S, Limpert J, Tünnermann A 2012 Opt. Lett. 37 4407Google Scholar

    [24]

    Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar

    [25]

    Hädrich S, Krebs M, Hoffmann A, Klenke A, Rothhardt J, Limpert J, Tünnermann A 2015 Light Sci. Appl. 4 e320Google Scholar

    [26]

    Rothhardt J, Hädrich S, Carstens H, Herrick N, Demmler S, Limpert J, Tünnermann A 2011 Opt. Lett. 36 4605Google Scholar

    [27]

    Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523Google Scholar

    [28]

    Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P 2016 Opt. Lett. 41 4511Google Scholar

    [29]

    Grebing C, Müller M, Buldt J, Stark H, Limpert J 2020 Opt. Lett. 45 6250Google Scholar

    [30]

    Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S 2021 Opt. Lett. 46 929Google Scholar

    [31]

    Weitenberg J, Saule T, Schulte J, Russbueldt P 2017 IEEE J. Quantum Electron. 53 1Google Scholar

    [32]

    Raab A K, Seidel M, Guo C, Sytcevich I, Arisholm G, Anne L H, Cord L A, Viotti A L 2022 Opt. Lett. 47 5084Google Scholar

    [33]

    Seidel M, Balla P, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M 2022 Ultraf. Sci. 17 9754919Google Scholar

    [34]

    Song J J, Wang Z H, Wang X Z, Lü R C, Teng H, Zhu J F, Wei Z Y 2021 Chin. Opt. Lett. 19 093201Google Scholar

    [35]

    Lavenu L, Natile M, Guichard F, Zaouter Y, Delen X, Hanna M, Mottay E, Georges P 2018 Opt. Lett. 43 2252Google Scholar

    [36]

    Viotti A L, Alisauskas S, Tünnermann H, Escoto E, Seidel M, Dudde K, Manschwetus B, Hartl I, Christoph M H 2021 Opt. Lett. 46 4686Google Scholar

    [37]

    Russbueldt P, Weitenberg J, Schulte J, Meyer R, Meinhardt C, Hoffmann H D, Poprawe R 2019 Opt. Lett. 44 5222Google Scholar

    [38]

    Rajhans S, Velpula P K, Escoto E, Shalloo R, Farace B, Põder K, Osterhoff J, Leemans W P, Hartl I, Heyl C M 2021 Advanced Solid State Lasers Washington, DC, USA, October 3–7, 2021 paper AW2A.6

    [39]

    Gierschke P, Grebing C, Abdelaal M, Lenski M, Buldt J, Wang Z, Heuermann T, Mueller M, Gebhardt M, Rothhardt J, Limpert J 2022 Opt. Lett. 47 3511.Google Scholar

    [40]

    Balla P, Wahid A B, Sytcevich I, Guo C, Viotti A L, Silletti L, Cartella A, Alisauskas S, Tavakol H, Grosse-Wortmann U, Schönberg A, Seidel M, Trabattoni A, Manschwetus B, Lang T, Calegari F, Couairon A, L’Huillier A, Arnold C L, Hartl I, Heyl C M 2020 Opt. Lett. 45 2572Google Scholar

    [41]

    Viotti A L, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M, Seidel M 2023 Opt. Lett. 48 984Google Scholar

    [42]

    Omar A, Vogel T, Hoffmann M, Saraceno C J 2023 Opt. Lett. 48 1458Google Scholar

    [43]

    Heyl C M, Seidel M, Escoto E, Schönberg A, Carlström S, Arisholm G, Lang T, Hartl I 2022 J. Phys. Photonics 4 014002Google Scholar

    [44]

    Tsai C L, Meyer F, Omar A, Wang Y C, Liang A X, Lu C H, Hoffmann M, Yang S D, Saraceno C J 2019 Opt. Lett. 44 4115Google Scholar

    [45]

    Lavenu L, Natile M, Guichard F, Délen X, Hanna M, Zaouter Y, Georges P 2019 Opt. Express 27 1958Google Scholar

    [46]

    Daniault L, Cheng Z, Kaur J, Hergott J F, Réau F, Tcherbakoff O, Daher N, Délen X, Hanna M, Rodrigo L M 2021 Opt. Lett. 46 5264Google Scholar

  • [1] Wang Jing-Shang, Wang Dong-Liang, Chang Guo-Qing. Dispersion management dual-pass self-phase modulation-enabled spectral selection. Acta Physica Sinica, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [2] Li Wei, Wang Xiao, Hong Yi-Lin, Zeng Xiao-Ming, Mu Jie, Hu Bi-Long, Zuo Yan-Lei, Wu Zhao-Hui, Wang Xiao-Dong, Li Zhao-Li, Su Jing-Qin. Single-frame measurement of complete spatiotemporal field of ultrashort laser pulses using frequency domain separate spectral interferometry. Acta Physica Sinica, 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [3] Long Tian-Yang, Li Wei, Xu Hao-Tian, Wang Xiao. Influence of spatiotemporal coupling distortion on evaluation of pulse-duration-charactrization and focused intensity of ultra-fast and ultra-intensity laser. Acta Physica Sinica, 2022, 71(17): 174204. doi: 10.7498/aps.71.20220563
    [4] Wang Xiao-Ying, Xing Yu-Ting, Chen Run-Zhi, Jia Xue-Qi, Wu Ji-Hua, Jiang Jin, Li Lian-Yong, Chang Guo-Qing. Simultaneous label-free autofluorescence-multiharmonic microscopy driven by femtosecond sources based on self-phase modulation enabled spectral selection. Acta Physica Sinica, 2022, 71(10): 104204. doi: 10.7498/aps.71.20212282
    [5] Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun. Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb. Acta Physica Sinica, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [6] Single-frame measurement of the complete spatiotemporal field of ultrashort laser pulses using frequency domain separate spectral Interferometry. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211665
    [7] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [8] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [9] Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun. Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers. Acta Physica Sinica, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [10] Jiang Jun-Feng, Huang Can, Liu Kun, Zhang Yong-Ning, Wang Shuang, Zhang Xue-Zhi, Ma Zhe, Chen Wen-Jie, Yu Zhe, Liu Tie-Gen. All-fiber spectral compression of femtosecond pulse for coherent anti-Stokes Raman scattering excitation source. Acta Physica Sinica, 2017, 66(20): 204207. doi: 10.7498/aps.66.204207
    [11] Shi Jun-Kai, Chai Lu, Zhao Xiao-Wei, Li Jiang, Liu Bo-Wen, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue. Coupling dynamics for a photonic crystal fiber femtosecond laser nonlinear amplification system. Acta Physica Sinica, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [12] Hong Wei-Yi. “Inverted-image” frequency chirp induced by self-phase modulation in highly noninstantaneous medium. Acta Physica Sinica, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [13] Liu Hua-Gang, Huang Jian-Hong, Weng Wen, Li Jin-Hui, Zheng Hui, Dai Shu-Tao, Zhao Xian, Wang Ji-Yang, Lin Wen-Xiong. High power all-normal-dispersion mode-locked Yb3+-doped double-clad fiber femtosecond laser. Acta Physica Sinica, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [14] Niu Hai-Liang, Zhang Yue-Guang, Shen Wei-Dong, Yu Peng, Li Yang-Hui, Liu Xu. Design of ultrabroadband double-chirped mirror pairs for ultrafast lasers. Acta Physica Sinica, 2012, 61(1): 014211. doi: 10.7498/aps.61.014211
    [15] Han Qing-Sheng, Qiao Yao-Jun, Li Wei. The new insight into the optical pulse propagation theory and minimum-distortion propagation based on thefractional Fourier transformation. Acta Physica Sinica, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [16] Ma Wen-Wen, Li Shu-Guang, Yin Guo-Bing, Feng Rong-Pu, Fu Bo. High efficiency pulse compression in tapered microstructure fibers in anomalous dispersion region. Acta Physica Sinica, 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [17] Chen Yong-Zhu, Li Yu-Zhong, Xu Wen-Cheng. Research on flat ultra-wideband supercontinuum generated in dispersion-flattened decreasing fiber. Acta Physica Sinica, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [18] Xia Ge, Huang De-Xiu, Yuan Xiu-Hua. Investigation of supercontinuum generation in normal dispersion-flattened fiber by picosecond seed pulses. Acta Physica Sinica, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [19] Bu Yang, Wang Xiang-Zhao. Suppression of pulse impairments due to cross-phase modulation by frequency domain phase conjugation. Acta Physica Sinica, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [20] Wu Guo-Hua, Guo Hong, Liu Ming-Wei, Deng Dong-Mei, Liu Shi-Xiong. Comparison of wakefield and relativistic effects on the self-phase modulation and frequency shift of intense laser pulse propagation. Acta Physica Sinica, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
Metrics
  • Abstract views:  1892
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2024
  • Accepted Date:  22 April 2024
  • Available Online:  28 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回