Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simultaneous label-free autofluorescence-multiharmonic microscopy driven by femtosecond sources based on self-phase modulation enabled spectral selection

Wang Xiao-Ying Xing Yu-Ting Chen Run-Zhi Jia Xue-Qi Wu Ji-Hua Jiang Jin Li Lian-Yong Chang Guo-Qing

Citation:

Simultaneous label-free autofluorescence-multiharmonic microscopy driven by femtosecond sources based on self-phase modulation enabled spectral selection

Wang Xiao-Ying, Xing Yu-Ting, Chen Run-Zhi, Jia Xue-Qi, Wu Ji-Hua, Jiang Jin, Li Lian-Yong, Chang Guo-Qing
PDF
HTML
Get Citation
  • Nonlinear optical microscopy technique has unique advantages in tissue imaging, such as enhanced contrast, high resolution, and label-free deep optical sectioning capabilities. Nonlinear optical microscopy also has multiple imaging modalities, corresponding to various components in biological tissues. Unfortunately, its wide applications are hindered due to the lack of broadly tunable femtosecond sources designed for driving multimodalities simultaneously. To solve this challenge, we propose a new wavelength conversion approach—self-phase modulation (SPM) enabled spectral selection, dubbed as SESS. The SESS employs SPM to broaden the input spectrum in a short fiber, and the broadened spectrum features well-isolated spectral lobes. Using the suitable optical filters to select the outermost spectral lobes produces nearly transform-limited femtosecond pulses. In this work, we demonstrate a fiber-optic SESS source for multimodal nonlinear optical microscopy. Based on a 43-MHz Yb-fiber laser, this SESS source can emit 990-nm, 84-fs pulses with >5-nJ energy and ~84-fs pulse duration; it can also produce 1110-nm, 48-fs pulses with 15-nJ energy. The 990-nm pulses are used to drive two-photon excitation fluorescence of many important fluorophores and second-harmonic generation microscopy, which, combined with image splicing technology, enables us to obtain a large field of view image of the gastric tissue. We also employ the 1110-nm pulses to drive simultaneous label-free autofluorescence-multiharmonic microscopy for multimodal imaging of gastric tissue. Two-photon excitation fluorescence, three-photon excitation fluorescence, second-harmonic generation and third-harmonic generation signals of gastric tissue are simultaneously excited efficiently. Such a multimodal nonlinear optical microscopy driven by SESS sources becomes a powerful tool in biomedical imaging.
      Corresponding author: Wu Ji-Hua, jh_02821@126.com ; Chang Guo-Qing, guoqing.chang@iphy.ac.cn
    • Funds: Project supported by the Strategic Support Force Medical Center Clinical Innovation Topics for Medicine and health, China (Grant No. 19ZX40), the National Natural Science Foundation of China (Grant No. 11774234), and the Program of Development of a New Multiphoton Microscope for Large Depth and High Precision Imaging of Three-dimensional Biological Models, China (Grant No. YJKYYQ20190034)
    [1]

    Hanson K M, Bardeen C J 2009 Photochem. Photobiol. 85 33Google Scholar

    [2]

    Masters B R, So P T C, Gratton E 1997 Biophys. J. 72 2405Google Scholar

    [3]

    König K, Riemann I 2003 J. Biomed. Opt. 8 432Google Scholar

    [4]

    König K, Ehlers A, Stracke F, Riemann I 2006 Skin Pharmacol. Physiol. 19 78Google Scholar

    [5]

    König K, Ehlers A, Riemann I, Schenkl S, Bückle R, Kaatz M 2007 Microsc. Res. Tech. 70 398Google Scholar

    [6]

    Paoli J, Smedh M, Wennberg A M, Ericson M B 2008 J. Invest. Dermatol. 128 1248Google Scholar

    [7]

    Breunig H G, Studier H, König K 2010 Opt. Express 18 7857Google Scholar

    [8]

    El Madani H A, Tancrède-Bohin E, Bensussan A, Colonna A, Dupuy A, Bagot M, Pena A M 2012 J. Biomed. Opt. 17 026009Google Scholar

    [9]

    Balu M, Mazhar A, Hayakawa C K, Mittal R, Krasieva T B, König K, Venugopalan V, Tromberg B J 2013 Biophys. J. 104 258Google Scholar

    [10]

    Cahill L C, Giacomelli M G, Tadayuki Y 2018 Lab. Invest. 98 150Google Scholar

    [11]

    Cahill L C, Fujimoto J G, Giacomelli M G 2019 Mod. Pathol. 32 1158Google Scholar

    [12]

    Sun C K, Chien T K, Ming L W 2019 J. Biophotonics 12 1

    [13]

    You S, Tu H, Chaney E J, Sun Y, Zhao Y, Bower A J, Liu Y Z, Marjanovic M, Sinha S, Pu Y, Boppart S A 2018 Nat. Commun. 9 2125Google Scholar

    [14]

    Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, Jain R K 2003 Nat. Med. 9 796Google Scholar

    [15]

    Sun C K, Chen C C, Chu S W, Tsai T H, Chen Y C, Lin B L 2003 Opt. Lett. 28 2488Google Scholar

    [16]

    Tai S P, Tsai T H, Lee W J, Shieh D B, Liao Y H, Huang H Y, Zhang K, Liu H L, Sun C K 2005 Opt. Express 13 8231Google Scholar

    [17]

    Chen S Y, Wu H Y, Sun C K 2009 J. Biomed. Opt. 14 060505Google Scholar

    [18]

    Yasui T, Takahashi Y, Ito M, Fukushima S, Araki T 2009 Appl. Opt. 48 D88Google Scholar

    [19]

    Chen S Y, Chen S U, Wu H Y, Lee W J, Liao Y H, Sun C K 2010 IEEE J. Sel. Top. Quantum Electron. 16 478Google Scholar

    [20]

    Tsai N R, Chen S Y, Shieh D B, Lou P J, Sun C K 2011 Biomed. Opt. Express 2 2317Google Scholar

    [21]

    Zumbusch A, Holtom G R, Xie X S 1999 Phys. Rev. Lett. 82 4142Google Scholar

    [22]

    Hellerer T, Enejder A M, Zumbusch A 2004 Appl. Phys. Lett. 85 25Google Scholar

    [23]

    Legesse F B, Medyukhina A, Heuke S, Popp J 2015 Comput. Med. Imaging Graph. 43 36Google Scholar

    [24]

    Freudiger C W, Min W, Saar B G, Lu S, Holtom G R, He C, Tsai J C, Kang J X, Xie X S 2008 Science 322 1857Google Scholar

    [25]

    Ji M, Lewis S, Camelo-Piragua S, Ramkissoon S H, Snuderl M, Venneti S, Fisher-Hubbard A, Garrard M, Fu D, Wang A C, Heth J A, Maher C O, Sanai N, Johnson T D, Freudiger C W, Sagher O, Xie X S, Orringer D A 2015 Sci. Transl. Med. 7 309ra163Google Scholar

    [26]

    Georgakoudi I, Quinn K P 2012 Annu. Rev. Biomed. Eng. 14 351Google Scholar

    [27]

    Chang T, Zimmerley S, Quinn K P, Jouenne I L, Kaplan D L, Beaurepaire E, Georgakoudi I 2013 Biomaterials 34 8607Google Scholar

    [28]

    Hou J, Wright H J, Chan N S K, Tran R D H, Razorenova O V, Potma E O, Tromberg B J 2016 J Biomed Opt. 21 060503Google Scholar

    [29]

    Huang S H, Heikal A A, Webb W W 2002 Biophys. J. 82 2811Google Scholar

    [30]

    Zoumi A, Yeh A, Tromberg B J 2002 Proc. Natl. Acad. Sci. U. S. A. 99 11014Google Scholar

    [31]

    Zipfel W R, Williams R M, Christie R, Nikitin A Y, Hyman B T, Webb W W 2003 Proc. Natl. Acad. Sci. U. S. A. 100 7075Google Scholar

    [32]

    Chu S W, Chen I H, Liu T M, Chen P C, Sun C K, Lin B L 2001 Opt. Lett. 26 1909Google Scholar

    [33]

    Xu C, Wise F W 2013 Nat. Photonics 7 875Google Scholar

    [34]

    Lim H, Ilday F O, Buckley J, Chong A, Wise F W 2004 Electron. Lett. 40 1523Google Scholar

    [35]

    Takayanagi J, Sugiura T, Yoshida M, Nishizawa N 2006 IEEE Photonics Technol. Lett. 18 2284Google Scholar

    [36]

    Li K C, Huang L L H, Liang J H, Chang M C 2016 Biomed. Opt. Express 7 4803Google Scholar

    [37]

    Chen H W, Haider Z, Lim J, Xu S, Yang Z, Kärtner F X, Chang G, 2013 Opt. Lett. 38 4927Google Scholar

    [38]

    Chan M C, Lien C H, Lu J Y, Lyu B H 2014 Opt. Express 22 9498Google Scholar

    [39]

    Tauser F, Adler F, Leitenstorfer A 2004 Opt. Lett. 29 516Google Scholar

    [40]

    Tu H, Lægsgaard J, Zhang R, Tong S, Liu Y, Boppart S A 2013 Opt. Express 21 23188Google Scholar

    [41]

    Liu Y, Tu H, Benalcazar W A, Chaney E J, Boppart S A 2012 IEEE J. Sel. Top. Quantum Electron. 18 1209Google Scholar

    [42]

    Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J, Tünnermann A 2015 Opt. Express 23 23968Google Scholar

    [43]

    Liu W, Li C, Zhang Z, Kärtner F X, Chang G Q 2016 Opt. Express 24 15328Google Scholar

    [44]

    Liu W, Chia S H, Chung H Y, Greinert R, Kärtner F X, Chang G Q 2017 Opt. Express 25 6822Google Scholar

    [45]

    Chung H Y, Liu W, Cao Q, Kärtner F X, Chang G Q 2017 Opt. Express 25 15760Google Scholar

    [46]

    Chung H Y, Liu W, Cao Q, Song L W, Kärtner F X, Chang G Q 2018 Opt. Express 26 3684Google Scholar

    [47]

    Chung H Y, Liu W, Cao Q, Greinert R, Kärtner F X, Chang G Q 2019 IEEE J. Sel. Top. Quantum Electron 25 6800708Google Scholar

    [48]

    Chung H Y, Greinert R, Kärtner F X, Chang G Q 2019 Biomed. Opt. Express 10 514Google Scholar

    [49]

    Herz J, Siffrin V, Hauser A E, Brandt A U, Leuenberger T, Radbruch H, Zipp F, Niesne R A 2010 Biophys. J. 98 715Google Scholar

    [50]

    Bissell M J, Radisky D 2001 Nat. Rev. Cancer 1 46Google Scholar

  • 图 1  基于SESS的非线性光学显微镜实验装置. ISO: 隔离器, LD: 二极管泵浦激光源, WDM: 波分复用器, Amp: 光纤放大器, HWP: 半波片, PBS: 偏振分束器, L: 透镜, LPF: 长通滤波器, NLOM: 非线性光学显微镜

    Figure 1.  Schematic setup of the nonlinear optical microscopy driven by SESS. ISO: isolator, LD: laser diode, WDM: wavelength-division multiplexing, Amp: amplifier, HWP: half-wave plate, PBS: polarization beam splitter, L: lens, LPF: long pass filter, NLOM: nonlinear optical microscopy.

    图 2  放大脉冲的光谱和自相关轨迹 (a)光谱; (b)自相关轨迹. 红色曲线: 测量得到的自相关轨迹, 黑色曲线: 通过光谱计算得到的变换极限脉冲的自相关轨迹

    Figure 2.  Spectrum and autocorrelation trace of the amplified pulse: (a) Spectrum; (b) autocorrelation trace. Red curve: measured autocorrelation trace. Black curve: calculated from the transform-limited pulses allowed by the amplified pulse spectrum.

    图 3  当耦合到光纤里的能量为44 nJ时输出的展宽光谱以及990 nm处滤波得到的脉冲光谱和自相关轨迹 (a)展宽光谱; (b)自相关轨迹. 红色曲线: 测量得到的自相关轨迹, 黑色曲线: 通过光谱计算得到的变换极限脉冲的自相关轨迹. 插图: 990 nm处滤波得到的脉冲光谱

    Figure 3.  Spectrum broadening with coupled energy of 44 nJ, spectrum and autocorrelation trace of the filtered pulses at 990 nm: (a) Broadened spectrum; (b) autocorrelation trace. Red curve: measured autocorrelation trace. Black curve: calculated from the transform-limited pulses allowed by the spectrum at 990 nm. Inset: filtered spectrum at 990 nm.

    图 4  当耦合到光纤里的能量为50 nJ时输出的展宽光谱以及1110 nm处滤波得到的脉冲光谱和自相关曲线 (a)展宽光谱; (b)自相关轨迹. 红色曲线: 测量得到的自相关轨迹, 黑色曲线: 通过光谱计算得到的变换极限脉冲的自相关轨迹, 插图: 1110 nm处滤波得到的脉冲光谱

    Figure 4.  Spectrum broadening with coupled energy of 50 nJ, spectrum and autocorrelation trace of the filtered pulses at 1110 nm: (a) Broadened spectrum; (b) autocorrelation trace. Red curve: measured autocorrelation trace. Black curve: calculated from the transform-limited pulses allowed by the spectrum at 1110 nm. Inset: filtered spectrum at 1110 nm.

    图 5  离体人体胃组织的2PEF/SHG图像 (a) 2PEF图像; (b) SHG图像; (c) 2PEF和SHG的叠加图像. 白色箭头: 上皮细胞; 黄色箭头: 胶原蛋白. 比例尺: 100 μm

    Figure 5.  2PEF/SHG images of ex vivo human gastric tissue: (a) 2PEF image; (b) SHG image; (c) merging of 2PEF and SHG images. White arrow: epithelial cells; yellow arrow: collagen. Scale bar: 100 μm.

    图 6  离体人体胃组织的2PEF/SHG/3PEF/THG图像 (a) 2PEF图像; (b) SHG图像; (c) 3PEF图像; (d) THG图像; (e) 2PEF/SHG/3PEF/THG的叠加图像. 粉色箭头: 弹力纤维; 黄色箭头: 胶原纤维; 白色箭头: 脂肪细胞. 比例尺: 100 μm.

    Figure 6.  2PEF/SHG/3PEF/THG images of ex vivo human gastric tissue: (a) 2PEF image; (b) SHG image; (c) 3PEF image; (d) THG image; (e) merging of 2PEF/SHG/3PEF/THG images. Pink arrow: elastic; yellow arrow: collagen; white arrow: adipocyte. Scale bar: 100 μm.

  • [1]

    Hanson K M, Bardeen C J 2009 Photochem. Photobiol. 85 33Google Scholar

    [2]

    Masters B R, So P T C, Gratton E 1997 Biophys. J. 72 2405Google Scholar

    [3]

    König K, Riemann I 2003 J. Biomed. Opt. 8 432Google Scholar

    [4]

    König K, Ehlers A, Stracke F, Riemann I 2006 Skin Pharmacol. Physiol. 19 78Google Scholar

    [5]

    König K, Ehlers A, Riemann I, Schenkl S, Bückle R, Kaatz M 2007 Microsc. Res. Tech. 70 398Google Scholar

    [6]

    Paoli J, Smedh M, Wennberg A M, Ericson M B 2008 J. Invest. Dermatol. 128 1248Google Scholar

    [7]

    Breunig H G, Studier H, König K 2010 Opt. Express 18 7857Google Scholar

    [8]

    El Madani H A, Tancrède-Bohin E, Bensussan A, Colonna A, Dupuy A, Bagot M, Pena A M 2012 J. Biomed. Opt. 17 026009Google Scholar

    [9]

    Balu M, Mazhar A, Hayakawa C K, Mittal R, Krasieva T B, König K, Venugopalan V, Tromberg B J 2013 Biophys. J. 104 258Google Scholar

    [10]

    Cahill L C, Giacomelli M G, Tadayuki Y 2018 Lab. Invest. 98 150Google Scholar

    [11]

    Cahill L C, Fujimoto J G, Giacomelli M G 2019 Mod. Pathol. 32 1158Google Scholar

    [12]

    Sun C K, Chien T K, Ming L W 2019 J. Biophotonics 12 1

    [13]

    You S, Tu H, Chaney E J, Sun Y, Zhao Y, Bower A J, Liu Y Z, Marjanovic M, Sinha S, Pu Y, Boppart S A 2018 Nat. Commun. 9 2125Google Scholar

    [14]

    Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, Jain R K 2003 Nat. Med. 9 796Google Scholar

    [15]

    Sun C K, Chen C C, Chu S W, Tsai T H, Chen Y C, Lin B L 2003 Opt. Lett. 28 2488Google Scholar

    [16]

    Tai S P, Tsai T H, Lee W J, Shieh D B, Liao Y H, Huang H Y, Zhang K, Liu H L, Sun C K 2005 Opt. Express 13 8231Google Scholar

    [17]

    Chen S Y, Wu H Y, Sun C K 2009 J. Biomed. Opt. 14 060505Google Scholar

    [18]

    Yasui T, Takahashi Y, Ito M, Fukushima S, Araki T 2009 Appl. Opt. 48 D88Google Scholar

    [19]

    Chen S Y, Chen S U, Wu H Y, Lee W J, Liao Y H, Sun C K 2010 IEEE J. Sel. Top. Quantum Electron. 16 478Google Scholar

    [20]

    Tsai N R, Chen S Y, Shieh D B, Lou P J, Sun C K 2011 Biomed. Opt. Express 2 2317Google Scholar

    [21]

    Zumbusch A, Holtom G R, Xie X S 1999 Phys. Rev. Lett. 82 4142Google Scholar

    [22]

    Hellerer T, Enejder A M, Zumbusch A 2004 Appl. Phys. Lett. 85 25Google Scholar

    [23]

    Legesse F B, Medyukhina A, Heuke S, Popp J 2015 Comput. Med. Imaging Graph. 43 36Google Scholar

    [24]

    Freudiger C W, Min W, Saar B G, Lu S, Holtom G R, He C, Tsai J C, Kang J X, Xie X S 2008 Science 322 1857Google Scholar

    [25]

    Ji M, Lewis S, Camelo-Piragua S, Ramkissoon S H, Snuderl M, Venneti S, Fisher-Hubbard A, Garrard M, Fu D, Wang A C, Heth J A, Maher C O, Sanai N, Johnson T D, Freudiger C W, Sagher O, Xie X S, Orringer D A 2015 Sci. Transl. Med. 7 309ra163Google Scholar

    [26]

    Georgakoudi I, Quinn K P 2012 Annu. Rev. Biomed. Eng. 14 351Google Scholar

    [27]

    Chang T, Zimmerley S, Quinn K P, Jouenne I L, Kaplan D L, Beaurepaire E, Georgakoudi I 2013 Biomaterials 34 8607Google Scholar

    [28]

    Hou J, Wright H J, Chan N S K, Tran R D H, Razorenova O V, Potma E O, Tromberg B J 2016 J Biomed Opt. 21 060503Google Scholar

    [29]

    Huang S H, Heikal A A, Webb W W 2002 Biophys. J. 82 2811Google Scholar

    [30]

    Zoumi A, Yeh A, Tromberg B J 2002 Proc. Natl. Acad. Sci. U. S. A. 99 11014Google Scholar

    [31]

    Zipfel W R, Williams R M, Christie R, Nikitin A Y, Hyman B T, Webb W W 2003 Proc. Natl. Acad. Sci. U. S. A. 100 7075Google Scholar

    [32]

    Chu S W, Chen I H, Liu T M, Chen P C, Sun C K, Lin B L 2001 Opt. Lett. 26 1909Google Scholar

    [33]

    Xu C, Wise F W 2013 Nat. Photonics 7 875Google Scholar

    [34]

    Lim H, Ilday F O, Buckley J, Chong A, Wise F W 2004 Electron. Lett. 40 1523Google Scholar

    [35]

    Takayanagi J, Sugiura T, Yoshida M, Nishizawa N 2006 IEEE Photonics Technol. Lett. 18 2284Google Scholar

    [36]

    Li K C, Huang L L H, Liang J H, Chang M C 2016 Biomed. Opt. Express 7 4803Google Scholar

    [37]

    Chen H W, Haider Z, Lim J, Xu S, Yang Z, Kärtner F X, Chang G, 2013 Opt. Lett. 38 4927Google Scholar

    [38]

    Chan M C, Lien C H, Lu J Y, Lyu B H 2014 Opt. Express 22 9498Google Scholar

    [39]

    Tauser F, Adler F, Leitenstorfer A 2004 Opt. Lett. 29 516Google Scholar

    [40]

    Tu H, Lægsgaard J, Zhang R, Tong S, Liu Y, Boppart S A 2013 Opt. Express 21 23188Google Scholar

    [41]

    Liu Y, Tu H, Benalcazar W A, Chaney E J, Boppart S A 2012 IEEE J. Sel. Top. Quantum Electron. 18 1209Google Scholar

    [42]

    Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J, Tünnermann A 2015 Opt. Express 23 23968Google Scholar

    [43]

    Liu W, Li C, Zhang Z, Kärtner F X, Chang G Q 2016 Opt. Express 24 15328Google Scholar

    [44]

    Liu W, Chia S H, Chung H Y, Greinert R, Kärtner F X, Chang G Q 2017 Opt. Express 25 6822Google Scholar

    [45]

    Chung H Y, Liu W, Cao Q, Kärtner F X, Chang G Q 2017 Opt. Express 25 15760Google Scholar

    [46]

    Chung H Y, Liu W, Cao Q, Song L W, Kärtner F X, Chang G Q 2018 Opt. Express 26 3684Google Scholar

    [47]

    Chung H Y, Liu W, Cao Q, Greinert R, Kärtner F X, Chang G Q 2019 IEEE J. Sel. Top. Quantum Electron 25 6800708Google Scholar

    [48]

    Chung H Y, Greinert R, Kärtner F X, Chang G Q 2019 Biomed. Opt. Express 10 514Google Scholar

    [49]

    Herz J, Siffrin V, Hauser A E, Brandt A U, Leuenberger T, Radbruch H, Zipp F, Niesne R A 2010 Biophys. J. 98 715Google Scholar

    [50]

    Bissell M J, Radisky D 2001 Nat. Rev. Cancer 1 46Google Scholar

  • [1] Li Pin-Bin, Teng Hao, Tian Wen-Long, Huang Zhen-Wen, Zhu Jiang-Feng, Zhong Shi-Yang, Yun Chen-Xia, Liu Wen-Jun, Wei Zhi-Yi. Nonlinear pulse compression technique based on in multi-pass plano-cancave cavity. Acta Physica Sinica, 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [2] Wang Jing-Shang, Wang Dong-Liang, Chang Guo-Qing. Dispersion management dual-pass self-phase modulation-enabled spectral selection. Acta Physica Sinica, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [3] Xi Xiao-Ming, Yang Bao-Lai, Wang Peng, Zhang Han-Wei, Wang Xiao-Lin, Han Kai, Wang Ze-Feng, Xu Xiao-Jun, Chen Jin-Bao. Over 10-kW fiber laser spectral beam combination based on dichromatic mirrors. Acta Physica Sinica, 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [4] Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun. Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb. Acta Physica Sinica, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [5] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [6] Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun. Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers. Acta Physica Sinica, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [7] Jiang Jun-Feng, Huang Can, Liu Kun, Zhang Yong-Ning, Wang Shuang, Zhang Xue-Zhi, Ma Zhe, Chen Wen-Jie, Yu Zhe, Liu Tie-Gen. All-fiber spectral compression of femtosecond pulse for coherent anti-Stokes Raman scattering excitation source. Acta Physica Sinica, 2017, 66(20): 204207. doi: 10.7498/aps.66.204207
    [8] Hong Wei-Yi. “Inverted-image” frequency chirp induced by self-phase modulation in highly noninstantaneous medium. Acta Physica Sinica, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [9] Shi Jun-Kai, Chai Lu, Zhao Xiao-Wei, Li Jiang, Liu Bo-Wen, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue. Coupling dynamics for a photonic crystal fiber femtosecond laser nonlinear amplification system. Acta Physica Sinica, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [10] Zhang Li-Meng, Hu Ming-Lie, Gu Cheng-Lin, Fan Jin-Tao, Wang Qing-Yue. High power red to mid-infrared laser source from intracavity sum frequency optical parametric oscillator pumped by femtosecond fiber laser. Acta Physica Sinica, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [11] Zuo Lin, Yang Ai-Ying, Zhou Da-Wei, Sun Yu-Nan. Study on wave plate angles of polarization controller in nonlinear polarization rotation mode-locked fiber laser. Acta Physica Sinica, 2012, 61(5): 054211. doi: 10.7498/aps.61.054211
    [12] Zhang Da-Peng, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking. Acta Physica Sinica, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [13] Ma Wen-Wen, Li Shu-Guang, Yin Guo-Bing, Feng Rong-Pu, Fu Bo. High efficiency pulse compression in tapered microstructure fibers in anomalous dispersion region. Acta Physica Sinica, 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [14] Wang Jian-Ming, Duan Kai-Liang, Wang Yi-Shan. Experimental study of coherent beam combining of two fiber lasers. Acta Physica Sinica, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [15] Chen Yong-Zhu, Li Yu-Zhong, Xu Wen-Cheng. Research on flat ultra-wideband supercontinuum generated in dispersion-flattened decreasing fiber. Acta Physica Sinica, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [16] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [17] Ren Guang-Jun, Zhang Qiang, Wang Peng, Yao Jian-Quan. Study of Nd3+-doped polarization-maintaining fiber laser. Acta Physica Sinica, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [18] Xia Ge, Huang De-Xiu, Yuan Xiu-Hua. Investigation of supercontinuum generation in normal dispersion-flattened fiber by picosecond seed pulses. Acta Physica Sinica, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [19] Bu Yang, Wang Xiang-Zhao. Suppression of pulse impairments due to cross-phase modulation by frequency domain phase conjugation. Acta Physica Sinica, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [20] Wu Guo-Hua, Guo Hong, Liu Ming-Wei, Deng Dong-Mei, Liu Shi-Xiong. Comparison of wakefield and relativistic effects on the self-phase modulation and frequency shift of intense laser pulse propagation. Acta Physica Sinica, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
Metrics
  • Abstract views:  4960
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2021
  • Accepted Date:  12 January 2022
  • Available Online:  10 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回