Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of the light excitation on energy transfer in a multi-pigments light-harvesting model of photosynthesis

Chen Hao Tian Jian-Min Sun Xue-Jian Lü Ke-Zhen Xu Li-Hua Li Hong-Rong

Citation:

Influence of the light excitation on energy transfer in a multi-pigments light-harvesting model of photosynthesis

Chen Hao, Tian Jian-Min, Sun Xue-Jian, Lü Ke-Zhen, Xu Li-Hua, Li Hong-Rong
PDF
HTML
Get Citation
  • Most studies on quantum effects in the process of excitation energy transfer in photosynthesis system are based on the single-excitation initial state hypothesis, which can well describe the initial state of some photosynthesis systems that people are concerned about. But for natural and artificial photosynthesis systems that do not meet the above hypothesis, the excitation process has a non-negligible impact on the system dynamics. Based on a multi-pigments model excited by Gaussian pulse, the effects of the excitation pulse width and the excitation interval on system dynamics and excitation energy transfer efficiency are studied. First, the kinetic equations for the overall evolution of the donor system and the acceptor system that can theoretically contain any number of pigments are derived. Afterwards, the relationship between the excitation energy transfer efficiency and the related parameters of the system, as well as the optimal range of the corresponding parameters are demonstrated by numerical simulation. It is found that under the condition of donor pigments being excited by a single Gaussian pulse, there exists optimal pulse width, and the optimal range of the pigment molecule numbers, the coupling strength as well as the dephasing rate can be modulated by the pulse width. The mechanism of the above modulation is also analyzed and presented. Under the condition of donor pigments being excited by two Gaussian pulses sequentially, there exists an optimal combination of pulse width and pulse interval. The kinetic equations obtained in this paper can be extended to other forms of excitation pulses. The numerical results and the related optimal design principles obtained have reference significance for the optimal design of artificial photosynthesis systems under different light conditions.
      Corresponding author: Chen Hao, hchen@qhnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774284)
    [1]

    Cardona T 2018 Heliyon 4 e00548Google Scholar

    [2]

    Van A H, Valkunas L, Van G R 2000 Photosynthetic Excitons (Singapore: World Scientific) pp1-45, 56

    [3]

    May V, Kühn O 2011 Charge and Energy Transfer Dynamics in Molecular Systems (Vol. 2) (Weinheim: Wiley-vch Verlag GmbH & Co. KGaA) pp1-7

    [4]

    Ishizaki A, Calhoun T R, Schlau-Cohen G S, Fleming G R 2010 Phys. Chem. Chem. Phys. 12 7319Google Scholar

    [5]

    Scholes G D, Fleming G R, Olaya-Castro A, Van G R 2011 Nat. Chem. 3 763Google Scholar

    [6]

    Olaya-Castro A, Scholes G D 2011 Int. Rev. Phys. Chem. 30 49Google Scholar

    [7]

    Collini E 2013 Chem. Soc. Rev. 42 4932Google Scholar

    [8]

    Levi F, Mostarda S, Rao F, Mintert F 2015 Rep. Prog. Phys. 78 082001Google Scholar

    [9]

    Olaya-Castro A, Lee C F, Olsen F F, Johnson N F 2008 Phys. Rev. B 78 085115Google Scholar

    [10]

    Fassioli F, Nazir A, Olaya-Castro A 2010 J. Phys. Chem. Lett. 1 2139Google Scholar

    [11]

    Zhang Y P, Li H R, Fang A P, Chen H, Li F L 2013 Chin. Phys. B 22 057104Google Scholar

    [12]

    Plenio M B, Huelga S F 2008 New J. Phys. 10 113019Google Scholar

    [13]

    Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106Google Scholar

    [14]

    Chen H, Wang X, Han C M, Li H R 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075501Google Scholar

    [15]

    Chan H C, Gamel O E, Fleming G R, Whaley K B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 054002Google Scholar

    [16]

    Barbatti M 2020 J. Chem. Theory Comput. 16 4849Google Scholar

    [17]

    Li H R, Zhang P, Liu Y J, Li F L, Zhu S Y 2013 Phys. Rev. A 87 053831Google Scholar

    [18]

    Zong X L, Song W, Zhou J, Yang M, Yu L B, Cao Z L 2018 Quantum Inf. Process. 17 158

    [19]

    Golubev N V, Kuleff A I 2014 Phys. Rev. A 90 035401Google Scholar

    [20]

    Medina I, Semiao F L 2019 Phys. Rev. A 100 012103Google Scholar

    [21]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp248-268

    [22]

    Yang S, Xu D Z, Song Z, Sun C P 2010 J. Chem. Phys. 132 234501Google Scholar

    [23]

    Caruso F, Chin A W, Datta A, Huelga S F, Plenio M B 2009 J. Chem. Phys. 131 105106Google Scholar

  • 图 1  理论模型示意图

    Figure 1.  Schematic diagram of the theoretical model.

    图 2  脉冲宽度$ \tau_{\rm{p}} $不同时激发能传输效率$ \eta $与供体数目$ m $和受体数目$ n $之间的关系 (a) $ \tau_{{\rm{p}}} = 0.01 V_{0}^{-1} $; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1} $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $

    Figure 2.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the number of donors ($ m $) and acceptors ($ n $) with different pulse width $ \tau_{\rm{p}} $: (a) $ \tau_{{\rm{p}}} = 0.01 V_{0}^{-1} $; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1} $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $.

    图 3  脉冲宽度$ \tau_{\rm{p}} $不同时激发能传输效率$ \eta $与供体色素分子间耦合强度$ J_{0} $以及受体色素分子间耦合强度$ g_{0} $之间的关系 (a) $\tau_{{\rm{p}}}= $$ 0.01 V_{0}^{-1}$; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1} $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $

    Figure 3.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the coupling strength of the donor pigments $ J_{0} $ as well as the coupling strength of the acceptor pigments $ g_{0} $ with different pulse width $ \tau_{\rm{p}} $: (a) $ \tau_{{\rm{p}}} = 0.01 V_{0}^{-1} $; (b) $\tau_{{\rm{p}}} = $$ 0.05 V_{0}^{-1}$; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $

    图 4  脉冲宽度$ \tau_{\rm{p}} $及供体数目$ m $和受体数目$ n $不同时, 激发能传输效率$ \eta $与供体色素分子间耦合强度$ J_{0} $和受体色素分子间耦合强度$ g_{0} $之间的关系 (a) $ \tau_{{\rm{p}}} = 0.01 V_{0}^{-1}, \; m = 8, \; n = 3 $; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1}, \; m = 9, \; n = 3 $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1}, \; m = 16, \; n = 7 $; (d)$ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1}, \; m = 16, \; n = 12 $

    Figure 4.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the coupling strength of the donor pigments $ J_{0} $ as well as the coupling strength of the acceptor pigments $ g_{0} $ with different pulse width $ \tau_p $, donor pigments number $ m $ and acceptor pigments number $ n $: (a) Pulse width $ \tau_{{\rm{p}}}=0.01 V_{0}^{-1}, \; m = 8, \; n = 3 $; (b) pulse width $ \tau_{{\rm{p}}}=0.05 V_{0}^{-1}, \; m = 9, \; n = 3 $; (c) pulse width $ \tau_{{\rm{p}}}=0.1 V_{0}^{-1}, \; m = 16, \; n = 7 $; (d) pulse width $ \tau_{{\rm{p}}}=0.15 V_{0}^{-1}, \; m = 16, \; n = 12 $

    图 5  激发能传输效率$ \eta $与脉冲宽度$ \tau_{{\rm{p}}} $之间的关系

    Figure 5.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the pulse width $ \tau_{\rm{p}} $

    图 6  脉冲宽度$ \tau_{\rm{p}} $不同时激发能传输效率$ \eta $与供体色素分子的退相位速率$ \varGamma^{\prime} $以及受体分子的退相位速率$ \kappa^{\prime} $之间的关系 (a) $\tau_{{\rm{p}}} = $$ 0.01 V_{0}^{-1}$; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1} $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $

    Figure 6.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the dephasing rate of the donor pigments $ \varGamma^{\prime} $as well as the dephasing rate of the acceptor pigments $ \kappa^{\prime} $ with different pulse width $ \tau_{\rm{p}} $: (a) $ \tau_{{\rm{p}}} = 0.01 V_{0}^{-1} $; (b) $ \tau_{{\rm{p}}} = 0.05 V_{0}^{-1} $; (c) $ \tau_{{\rm{p}}} = 0.1 V_{0}^{-1} $; (d) $ \tau_{{\rm{p}}} = 0.15 V_{0}^{-1} $

    图 7  双脉冲激发时, 激发能传输效率与脉冲间隔$ T $之间的关系

    Figure 7.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the pulse interval $ T $ with double-pulse excitation

    图 8  双脉冲激发时, 激发能传输效率$ \eta $与脉冲间隔$ T $以及脉冲宽度$\tau_{{\rm{p}}}$之间的关系

    Figure 8.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the pulse interval $ T $ as well as the pulse width $\tau_{\rm{p}}$ with double-pulse excitation

    图 9  供体色素分子间耦合强度$ J_{0} $以及受体色素分子间耦合强度$ g_{0} $不同时激发能传输效率$ \eta $与脉冲间隔$ T $以及脉冲宽度$ \tau_{{\rm{p}}} $之间的关系 (a) $ J_{0} = 0.1 V_{0}, \; g_{0}=0.5 V_{0} $; (b) $ J_{0} = 0.1 V_{0}, \; g_{0}=1.0 V_{0} $; (c) $ J_{0} = 0.2 V_{0}, \; g_{0}=0.5 V_{0} $; (d) $ J_{0} = 0.2 V_{0}, \; g_{0}=1.0 V_{0} $

    Figure 9.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the pulse interval $ T $ as well as the pulse width $ \tau_{\rm{p}} $ with different coupling strength of the donor pigments $ J_{0} $ and coupling strength of the acceptor pigments $ g_{0} $: (a) $J_{0} = $$ 0.1 V_{0}, \; g_{0}=0.5 V_{0}$; (b) $ J_{0} = 0.1 V_{0}, \; g_{0}=1.0 V_{0} $; (c) $ J_{0} = 0.2 V_{0}, \; g_{0}=0.5 V_{0} $; (d) $ J_{0} = 0.2 V_{0}, \; g_{0}=1.0 V_{0} $

    图 10  供体色素分子数目$ m $及受体色素分子数目$ n $不同时激发能传输效率$ \eta $与脉冲间隔$ T $以及脉冲宽度$\tau_{{\rm{p}}}$之间的关系 (a) 色素分子数目$ m = 8, \; n = 3 $; (b)色素分子数目$ m = 9, \; n = 3 $; (c)色素分子数目$ m = 16, \; n = 7 $; (d)色素分子数目$m = 16, \; $$ n = 12$

    Figure 10.  The relationship between the efficiency of the excitation energy transfer $ \eta $ and the pulse interval $ T $ as well as the pulse width $\tau_{\rm{p}}$ with different donor pigments number $ m $ and acceptor pigments number $ n $: (a) $ m = 8, \; n = 3 $; (b) $ m = 9, \; n = 3 $; (c) $ m = $$ 16, \; n = 7 $; (d) $ m = 16, \; n = 12 $

  • [1]

    Cardona T 2018 Heliyon 4 e00548Google Scholar

    [2]

    Van A H, Valkunas L, Van G R 2000 Photosynthetic Excitons (Singapore: World Scientific) pp1-45, 56

    [3]

    May V, Kühn O 2011 Charge and Energy Transfer Dynamics in Molecular Systems (Vol. 2) (Weinheim: Wiley-vch Verlag GmbH & Co. KGaA) pp1-7

    [4]

    Ishizaki A, Calhoun T R, Schlau-Cohen G S, Fleming G R 2010 Phys. Chem. Chem. Phys. 12 7319Google Scholar

    [5]

    Scholes G D, Fleming G R, Olaya-Castro A, Van G R 2011 Nat. Chem. 3 763Google Scholar

    [6]

    Olaya-Castro A, Scholes G D 2011 Int. Rev. Phys. Chem. 30 49Google Scholar

    [7]

    Collini E 2013 Chem. Soc. Rev. 42 4932Google Scholar

    [8]

    Levi F, Mostarda S, Rao F, Mintert F 2015 Rep. Prog. Phys. 78 082001Google Scholar

    [9]

    Olaya-Castro A, Lee C F, Olsen F F, Johnson N F 2008 Phys. Rev. B 78 085115Google Scholar

    [10]

    Fassioli F, Nazir A, Olaya-Castro A 2010 J. Phys. Chem. Lett. 1 2139Google Scholar

    [11]

    Zhang Y P, Li H R, Fang A P, Chen H, Li F L 2013 Chin. Phys. B 22 057104Google Scholar

    [12]

    Plenio M B, Huelga S F 2008 New J. Phys. 10 113019Google Scholar

    [13]

    Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A 2008 J. Chem. Phys. 129 174106Google Scholar

    [14]

    Chen H, Wang X, Han C M, Li H R 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075501Google Scholar

    [15]

    Chan H C, Gamel O E, Fleming G R, Whaley K B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 054002Google Scholar

    [16]

    Barbatti M 2020 J. Chem. Theory Comput. 16 4849Google Scholar

    [17]

    Li H R, Zhang P, Liu Y J, Li F L, Zhu S Y 2013 Phys. Rev. A 87 053831Google Scholar

    [18]

    Zong X L, Song W, Zhou J, Yang M, Yu L B, Cao Z L 2018 Quantum Inf. Process. 17 158

    [19]

    Golubev N V, Kuleff A I 2014 Phys. Rev. A 90 035401Google Scholar

    [20]

    Medina I, Semiao F L 2019 Phys. Rev. A 100 012103Google Scholar

    [21]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp248-268

    [22]

    Yang S, Xu D Z, Song Z, Sun C P 2010 J. Chem. Phys. 132 234501Google Scholar

    [23]

    Caruso F, Chin A W, Datta A, Huelga S F, Plenio M B 2009 J. Chem. Phys. 131 105106Google Scholar

  • [1] Zhang Xian-Jun. Development and application of cryogenic optical microscopy in photosynthesis research. Acta Physica Sinica, 2024, 73(22): 229201. doi: 10.7498/aps.73.20241072
    [2] Zeng Min, Luo Ying, Jiang Hong. Wireless power transfer supported device-to-device multicast energy cooperative transmission scheme. Acta Physica Sinica, 2022, 71(16): 168801. doi: 10.7498/aps.71.20220345
    [3] Yang Xu-Yun, Chen Yong-Cong, Lu Wen-Bin, Zhu Xiao-Mei, Ao Ping. Energy transfer in photosynthesis mediated by resonant confinement of exciton-polariton. Acta Physica Sinica, 2022, 71(23): 234202. doi: 10.7498/aps.71.20221412
    [4] Liu Hua-Song, Yang Xiao, Wang Li-Shuan, Jiang Cheng-Hui, Liu Dan-Dan, Ji Yi-Qin, Zhang Feng, Chen De-Ying. Gaussian oscillator model of the dielectric constant of SiO2 thin film in infrared range. Acta Physica Sinica, 2017, 66(5): 054211. doi: 10.7498/aps.66.054211
    [5] Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Zhang Bao-Ju. Propagation and interactions of Airy-Gaussian beams in saturable nonliear medium. Acta Physica Sinica, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [6] Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng. The ability of porous brittle materials to absorb and withstand high energy density pulse. Acta Physica Sinica, 2015, 64(12): 124302. doi: 10.7498/aps.64.124302
    [7] Liu Bao-Lin, Jia Wei-Guo, Wang Yu-Ping, Qiao Hai-Long, Wang Xu-Dong, Ke Neimule. Effect of Raman gain on the self-steepening characteristic in isotropic fibers. Acta Physica Sinica, 2014, 63(21): 214207. doi: 10.7498/aps.63.214207
    [8] Zhou Guo-Quan. The beam propagation factor and the kurtosis parameter of a Gaussian vortex beam. Acta Physica Sinica, 2012, 61(17): 174102. doi: 10.7498/aps.61.174102
    [9] Liu Dong-Bing, Cheng Jin-Ming, Qi Shuang-Xi, Wang Wan-Li, Qian Wei-Xin. Spatial correlation properties of focused spatially and spectrally partially coherent Hemite-Gaussian pulsed beams. Acta Physica Sinica, 2012, 61(24): 244202. doi: 10.7498/aps.61.244202
    [10] Li Hong-Yu, Zhang Qiang, Wang Chun-Ling, Yang Fu-Lin, Zhao Jian-Hua. The influences of air heat storage, plant photosynthesis and soil water movement on surface energy balance over the loess plateau. Acta Physica Sinica, 2012, 61(15): 159201. doi: 10.7498/aps.61.159201
    [11] Zhang Zhi-Yao, Zhou Xiao-Jun, Shi Sheng-Hui, Liang Rui. Analysis of pulse distortion in Brillouin slow light using broadband pump with rectangular spectrum. Acta Physica Sinica, 2010, 59(7): 4694-4700. doi: 10.7498/aps.59.4694
    [12] Lu Da-Quan, Hu Wei, Qian Lie-Jia, Fan Dian-Yuan. Propagation and spatiotemporal coupling of iso-diffraction ultra-short pulsed Hermite Gaussian beams in free space. Acta Physica Sinica, 2009, 58(3): 1655-1661. doi: 10.7498/aps.58.1655
    [13] Zhang Lian-Shui, Li Xiao-Li, Wang Jian, Yang Li-Jun, Feng Xiao-Min, Li Xiao-Wei, Fu Guang-Sheng. Electromagnetically induced absorption and electromagnetically induced transparency in an optical-radio two-photon coupling configuration. Acta Physica Sinica, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [14] Ji Xiao-Ling, Tang Ming-Yue, Zhang Tao. Spectral shift and spectral transition of ultrashort pulsed Hermite-Gaussian beams in the turbulent atmosphere. Acta Physica Sinica, 2007, 56(7): 4281-4288. doi: 10.7498/aps.56.4281
    [15] Pang Hai-Long, Li Ying-Jun, Lu Xin, Zhang Jie. Hydrodynamic model of transient Ni-like X-ray lasers driven by Gaussian laser pulse. Acta Physica Sinica, 2006, 55(12): 6382-6386. doi: 10.7498/aps.55.6382
    [16] He Feng, Yu Wei, Lu Pei-Xiang, Yuan Xiao, Liu Jing-Ru. Electron acceleration by a tightly focused femtosecond laser beam in vacuum. Acta Physica Sinica, 2004, 53(1): 165-170. doi: 10.7498/aps.53.165
    [17] Zheng Yang-Dong, Li Jun-Qing, Li Chun-Fei. . Acta Physica Sinica, 2002, 51(6): 1279-1285. doi: 10.7498/aps.51.1279
    [18] XU ZAI-XIN, ZHU BEN-YUAN. GENERALIZED VILLAIN ANALYSIS FOR U(1) MODEL WITH AN EXTENDED LATTICE ACTION. Acta Physica Sinica, 1988, 37(8): 1326-1332. doi: 10.7498/aps.37.1326
    [19] SHEN XUE-CHU, CHU JUN-HAO. FAR-INFRARED REFLECTION SPECTRA AND THE MULTIMODE MODEL FOR MIXED CRYSTAL CdxHg1-xTe. Acta Physica Sinica, 1985, 34(1): 56-64. doi: 10.7498/aps.34.56
    [20] S. T. BOW. MATRIX ANALYSIS OF PULSE WAVE PROPAGATION ON MULTI-CONDUCTOR TRANSMISSION SYSTEM. Acta Physica Sinica, 1965, 21(1): 171-190. doi: 10.7498/aps.21.171
Metrics
  • Abstract views:  4223
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2021
  • Accepted Date:  14 February 2022
  • Available Online:  21 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回