Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Noise reduction and 3D image restoration of single photon counting LiDAR using adaptive gating

Chen Song-Mao Su Xiu-Qin Hao Wei Zhang Zhen-Yang Wang Shu-Chao Zhu Wen-Hua Wang Jie

Citation:

Noise reduction and 3D image restoration of single photon counting LiDAR using adaptive gating

Chen Song-Mao, Su Xiu-Qin, Hao Wei, Zhang Zhen-Yang, Wang Shu-Chao, Zhu Wen-Hua, Wang Jie
PDF
HTML
Get Citation
  • Single photon LiDAR is considered as one of the most important tools in acquiring target information with high accuracy under extreme imaging conditions, as it offers single photon sensitivity and picosecond timing resolution. However, such technique sense the scene with the photons reflected by the target, thus resulting in severe degradation of image in presence of strong noise. Range gating with high-speed electronics is an effective way to suppress the noise, unfortunately, such technique suffers from manually selecting the parameters and limited gating width. This paper presents a target information extracting and image restoration method under large observation window, which first obtain the depth distribution of the target and extract the information within the range by analyzing the model of signal and noise, then further improve the image quality by adopting advanced image restoration algorithm and henceforth shows better results than those denoising method that purely relying on hardware. In the experiment, photon-per-pixel (PPP) was as low as 3.020 and signal-to-background ratio (SBR) was as low as 0.106, the proposed method is able to improve SBR with a factor of 19.330. Compared to classical algorithm named cross correlation, the reconstruction signal to noise ratio (RSNR) increased 33.520dB by further cooperating with advanced image restoration algorithm, thus improved the ability of sensing accurate target information under extreme cases.
      Corresponding author: Hao Wei, hwei@opt.ac.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2020M683600), the Strategic High Technology Innovation Project of the Chinese Academy of Sciences (Grant No. GQRC-19-19), the Youth Innovation Promotion Association XIOPM-CAS, and the self determined project of Pilot national laboratory for marine science and technology (Qingdao)
    [1]

    Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2021 Optica 8 344Google Scholar

    [2]

    Maccarone A, Rocca F M D, Mccarthy A, Henderson R, Buller G S 2019 Opt. Express 27 28437Google Scholar

    [3]

    Becker W 著 (屈军乐 译) 2009 高级时间相关单光子计数技术 (北京: 科学出版社) 第19—41 页

    Becker W (translated by Qu J L) 2009 Advanced Time-Correlated Single Photon Counting Techniques (Beijing: Science Press) pp19–41 (in Chinese)

    [4]

    Wallace A M, Halimi A, Buller G S 2020 IEEE Trans. Veh. Technol. 69 7064Google Scholar

    [5]

    Pawlikowska A M, Halimi A, Lamb R A, Gerald S B 2017 Opt. Express 25 11919Google Scholar

    [6]

    Tobin R, Halimi A, Mccarthy A, Laurenzis M, Christnacher F, Buller G S 2019 Opt. Express 27 4590Google Scholar

    [7]

    Tobin R, Halimi A, Mccarthy A, Soan P J, Buller G S 2021 Sci. Rep. 11 11236Google Scholar

    [8]

    Li Z P, Xin H, Cao Y, Wang B, Li Y H, Jin W, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2020 Photonics Res. 8 1532Google Scholar

    [9]

    汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰 2021 物理学报 70 174304Google Scholar

    Wang S C, Su X Q, Zhu W H, Chen S M, Zhang Z Y, Xu W H, Wang D J 2021 Acta Phys. Sin. 70 174304Google Scholar

    [10]

    Halimi A, Tobin R, Mccarthy A, Bioucas-Dias J, McLaughlin S, Buller G S 2020 IEEE Trans. Comput. Imag. 6 138Google Scholar

    [11]

    Tachella J, Altmann Y, Ren X, Mccarthy A, Buller G S 2019 SIAM J. Imag. Sci. 12 521Google Scholar

    [12]

    Rapp J, Goyal V K 2017 IEEE Trans. Comput. Imag. 3 445Google Scholar

    [13]

    Rapp J, Dawson R M A, Goyal V K 2020 Opt. Express 28 35143Google Scholar

    [14]

    Greeley A P, Neumann T A, Kurtz N T, Markus T, Martino A J 2019 IEEE Trans. Geosci. Remote Sens. 57 6542Google Scholar

    [15]

    Tobing P L, Wu Y C, Hayashi T, Kobayashi K, Toda T 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Barcelona, Spain, May 4–8, 2020, pp7204–7208.

    [16]

    Jiang S, Zhi X, Zhang W, Wang D, Hu J, Chen W 2021 Opt. Laser Eng. 136 106311Google Scholar

    [17]

    Lindell D B, Mattew O, Gordon W 2018 ACM Trans. Graph. 113 12

    [18]

    Chen S, Halimi A, Ren X, Mccarthy A, Su X, McLaughlin S, Buller G S 2020 IEEE Trans. Imag. Process. 29 3119Google Scholar

    [19]

    Hirschmuller H, Scharstein D 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) Minneapolis, Minnesota, USA, June 17–22, 2007, pp1–8.

    [20]

    Scharstein D, Hirschmuller H, Kitajima Y, Krathwohl G, Nesic N, Wang X, Westling P 2014 German Conference on Pattern Recognition (GCPR) Munster, Germany, September 3–5, 2014, pp31–42.

    [21]

    Ruget A, McLaughlin S, Henderson R K, Gyongy I, Halimi A, Leach J 2021 Opt. Express 29 11917Google Scholar

  • 图 1  光子计数激光雷达原理图 (a) 成像系统示意图; (b) 三维回波示意图

    Figure 1.  The schematic diagram of photon counting LiDAR: (a) Description of the imaging system; (b) description of the three dimensional echo.

    图 2  自适应信息提取过程示意图 (a) 空域求和示意图, 其中$ \oplus $表示求和; (b) 特征参数示意图; (c) 目标信息的分布范围

    Figure 2.  The schematic diagram of adaptive information extracting: (a) Schematic diagram of the summing process on the spatial domain, where $ \oplus $ stands for summing operation; (b) description of the feature parameters; (c) the distribution interval of the target

    图 3  仿真场景参考图. 左图为Recycle场景参考图, 右图为Art场景参考图

    Figure 3.  The reference image of the simulation scene. The reference image of Recycle scene and Art scene is shown in left and right respectively.

    图 4  实测场景参考图及实物图. 左图为调节支座场景参考图, 右图为调节支座场景实物图

    Figure 4.  The reference image and the physical map of the measured scene (i.e. supporting rod scene). The left image is the reference image of the supporting rod scene, and the right image is the physical map of the supporting rod scene

    图 5  Recycle场景重建结果对比图

    Figure 5.  The comparison of the restoration result of different algorithms under Recycle scene

    图 6  Art场景重建结果对比图

    Figure 6.  The comparison of the restoration result of different algorithms under Art scene

    图 7  调节支座场景重建结果对比图

    Figure 7.  The comparison of the result of different algorithms under supporting rod scene

    Algorithm 1 基于自适应门控的噪声抑制(AGNR)算法
    1: 输入: $ \widehat{{\boldsymbol Y}} $, γ, ω, σ
    2: 初始化$ T_N $, N, λ, Λ, PPP, SBR, $\varepsilon$, $ i = 1 $
    3: $\theta=\lambda \times N+(\varLambda-\lambda \times N) \times \frac{\omega}{\gamma}{\rm{e}}^{(-\frac{{\rm{SBR}}}{\gamma})}$
    4: while $ i = 1 $ do
    5: $ \{{\boldsymbol{\zeta}} = [T_a, T_b]\} \leftarrow (\widehat{{\boldsymbol Y}} > \theta) $
    6: $E=|\sum_{i = T_a}^{T_b}\widehat{ {\boldsymbol Y} }-[{\rm{PPP}}+\lambda \times (T_b-T_a)] \times N|$
    7: $T_{\rm{c} }= \Big\lceil \dfrac{E}{ \langle (\gamma/T) \times{\rm{ PPP} }, \lambda \rangle } \Big\rceil,$
    8: $(\theta_1, \theta_2) \leftarrow [(\underrightarrow{\zeta})_{T_{\rm{c}}}, (\underleftarrow{\bar{\zeta} })_{T_{\rm{c}}}]$
    9: 根据(7)式与(8)式计算$ E_1 $与$ E_2 $
    10: $ \theta=(\theta_1, \theta_2) \leftarrow \lfloor E_1, E_2 \rfloor $
    11: if $ E < \epsilon $ then
    12: $ i = 0 $
    13: end if
    14: end while
    15: $ ({\boldsymbol{\zeta}} > \gamma) \leftarrow 0 $
    16: $ {\boldsymbol{\zeta}} \leftarrow \{[{\boldsymbol{\zeta}}-\sigma] \cup [{\boldsymbol{\zeta}}+\sigma\} $
    DownLoad: CSV

    表 1  不同场景下AGNR算法的抑噪性能对比

    Table 1.  The noise reduction performance of AGNR algorithm under different scenarios

    场景 Recycle Art 调节支座
    Recycle1 Recycle2 Recycle3 Art1 Art2 Art3 调节支座1 调节支座2 调节支座3
    PPP 0.951 6.226 12.727 0.833 4.664 11.553 3.020 30.044 150.144
    SBR 0.581 0.127 0.031 0.013 0.114 0.014 0.106 0.104 0.104
    $\textrm{SBR}^{’}$ 6.435 1.431 0.363 0.222 1.931 0.250 2.049 2.050 2.029
    NRR ${11.076}$ ${11.268}$ ${11.710}$ ${17.077}$ ${16.939}$ ${17.857}$ ${19.330}$ ${19.712}$ ${19.510}$
    DownLoad: CSV

    表 2  不同重建算法在不同场景下RSNR对比(单位: dB)

    Table 2.  The RSNR of different reconstruction algorithms under different scenarios (in dB)

    场景 评价对象 Recycle Art 调节支座
    Recycle1 Recycle2 Recycle3 Art1 Art2 Art3 调节支座1 调节支座2 调节支座3
    互相关 距离图 $-9.743$ $-8.533$ $-8.231$ $-15.597$ $-10.482$ $-10.848$ $-4.932$ $-3.023$ $-1.338$
    反射率图 $-4.101$ $-0.908$ $-3.691$ $-21.453$ $-3.504$ $-8.024$ $4.533$ $4.687$ $4.698$
    AGCC 距离图 $11.524$ $17.961$ $17.577$ $12.862$ $19.789$ $19.633$ $22.352$ $24.751$ $26.369$
    反射率图 $0.114$ $6.433$ $6.062$ $-7.806$ $4.175$ $3.457$ $5.324$ $7.504$ $7.731$
    中值滤波 距离图 $13.954$ ${22.304}$ ${21.881}$ $18.552$ $27.340$ $26.903$ $24.389$ $25.909$ $26.788 $
    反射率图 $5.844$ $12.608$ $12.284$ $2.316$ ${10.584}$ $10.261$ $8.383$ $9.500$ $9.571$
    UA 距离图 ${20.768}$ $21.318$ $21.321$ $20.519$ $24.761$ $24.764$ ${28.588}$ ${28.741}$ ${29.199}$
    反射率图 $3.304$ ${16.755}$ ${18.760}$ $5.513$ $10.034$ ${11.122}$ ${7.926}$ ${9.677}$ ${9.890}$
    OPN3DR 距离图 $20.075$ $21.430$ $21.172$ ${22.767}$ ${27.453}$ ${27.397}$ $25.726$ $26.801$ $28.298$
    反射率图 ${11.093}$ $15.812$ $15.380$ ${8.910}$ $10.448$ $10.255$ $7.915$ $8.979$ $9.004$
    DownLoad: CSV

    表 3  不同重建算法的运行时间(单位: 秒)

    Table 3.  The processing time of different reconstruction algorithms (in seconds)

    场景 Recycle Art 调节支座
    ${\rm{Recycle1}}$ ${\rm{Recycle2}}$ ${\rm{ Recycle3}}$ ${\rm{Art1}}$ ${\rm{ Art2 }}$ ${\rm{Art3}}$ 调节支座1 调节支座2 调节支座3
    互相关 0.679 0.690 0.711 2.663 2.693 2.720 0.273 0.260 0.286
    AGCC 0.085 0.085 0.085 0.220 0.224 0.218 0.023 0.024 0.024
    中值滤波 0.095 0.096 0.096 0.235 0.239 0.234 0.035 0.035 0.036
    UA 6.290 7.759 10.787 20.335 13.517 19.832 4.320 5.073 8.711
    OPN3DR 1.422 1.344 1.986 5.464 5.518 5.228 0.145 0.228 0.724
    DownLoad: CSV

    表 4  滤波方式与成像性能对比

    Table 4.  The comparison of the performance and the way of filtering.

    场景 评价对象 距离图RSNR 反射率图RSNR 运行
    时间/s
    调节支座1 多尺度滤波 ${27.441}$ $0.125$ $0.785$
    最大尺度滤波 $25.726$ ${7.915}$ ${0.145}$
    调节支座2 多尺度滤波 ${29.273}$ $1.218$ $0.772$
    最大尺度滤波 $26.801$ ${8.979}$ ${0.228}$
    调节支座3 多尺度滤波 ${30.552}$ $7.030$ $0.781$
    最大尺度滤波 $28.298$ ${9.004}$ ${0.724}$
    DownLoad: CSV
  • [1]

    Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2021 Optica 8 344Google Scholar

    [2]

    Maccarone A, Rocca F M D, Mccarthy A, Henderson R, Buller G S 2019 Opt. Express 27 28437Google Scholar

    [3]

    Becker W 著 (屈军乐 译) 2009 高级时间相关单光子计数技术 (北京: 科学出版社) 第19—41 页

    Becker W (translated by Qu J L) 2009 Advanced Time-Correlated Single Photon Counting Techniques (Beijing: Science Press) pp19–41 (in Chinese)

    [4]

    Wallace A M, Halimi A, Buller G S 2020 IEEE Trans. Veh. Technol. 69 7064Google Scholar

    [5]

    Pawlikowska A M, Halimi A, Lamb R A, Gerald S B 2017 Opt. Express 25 11919Google Scholar

    [6]

    Tobin R, Halimi A, Mccarthy A, Laurenzis M, Christnacher F, Buller G S 2019 Opt. Express 27 4590Google Scholar

    [7]

    Tobin R, Halimi A, Mccarthy A, Soan P J, Buller G S 2021 Sci. Rep. 11 11236Google Scholar

    [8]

    Li Z P, Xin H, Cao Y, Wang B, Li Y H, Jin W, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2020 Photonics Res. 8 1532Google Scholar

    [9]

    汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰 2021 物理学报 70 174304Google Scholar

    Wang S C, Su X Q, Zhu W H, Chen S M, Zhang Z Y, Xu W H, Wang D J 2021 Acta Phys. Sin. 70 174304Google Scholar

    [10]

    Halimi A, Tobin R, Mccarthy A, Bioucas-Dias J, McLaughlin S, Buller G S 2020 IEEE Trans. Comput. Imag. 6 138Google Scholar

    [11]

    Tachella J, Altmann Y, Ren X, Mccarthy A, Buller G S 2019 SIAM J. Imag. Sci. 12 521Google Scholar

    [12]

    Rapp J, Goyal V K 2017 IEEE Trans. Comput. Imag. 3 445Google Scholar

    [13]

    Rapp J, Dawson R M A, Goyal V K 2020 Opt. Express 28 35143Google Scholar

    [14]

    Greeley A P, Neumann T A, Kurtz N T, Markus T, Martino A J 2019 IEEE Trans. Geosci. Remote Sens. 57 6542Google Scholar

    [15]

    Tobing P L, Wu Y C, Hayashi T, Kobayashi K, Toda T 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Barcelona, Spain, May 4–8, 2020, pp7204–7208.

    [16]

    Jiang S, Zhi X, Zhang W, Wang D, Hu J, Chen W 2021 Opt. Laser Eng. 136 106311Google Scholar

    [17]

    Lindell D B, Mattew O, Gordon W 2018 ACM Trans. Graph. 113 12

    [18]

    Chen S, Halimi A, Ren X, Mccarthy A, Su X, McLaughlin S, Buller G S 2020 IEEE Trans. Imag. Process. 29 3119Google Scholar

    [19]

    Hirschmuller H, Scharstein D 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) Minneapolis, Minnesota, USA, June 17–22, 2007, pp1–8.

    [20]

    Scharstein D, Hirschmuller H, Kitajima Y, Krathwohl G, Nesic N, Wang X, Westling P 2014 German Conference on Pattern Recognition (GCPR) Munster, Germany, September 3–5, 2014, pp31–42.

    [21]

    Ruget A, McLaughlin S, Henderson R K, Gyongy I, Halimi A, Leach J 2021 Opt. Express 29 11917Google Scholar

  • [1] Shi Yue, Ou Pan, Zheng Ming, Tai Han-Xu, Wang Yu-Hong, Duan Ruo-Nan, Wu Jian. Artifact noise suppression of particle-field computed tomography based on lightweight residual and enhanced convergence neural network. Acta Physica Sinica, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [2] Shen Shan-Shan, Gu Guo-Hua, Chen Qian, He Rui-Qing, Cao Qing-Qing. Time-space united coding spread spectrum single photon counting imaging method. Acta Physica Sinica, 2023, 72(2): 024202. doi: 10.7498/aps.72.20221438
    [3] Cao Ruo-Lin, Peng Qing-Xuan, Wang Jin-Dong, Chen Yong-Jie, Huang Yun-Fei, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Real-time polarization compensation system for wavelength division multiplexing in low noise fiber channel based on single photon counting feedback. Acta Physica Sinica, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [4] Chen Jie, Zhou Xin, Bai Xing, Li Cong, Xu Zhao, Ni Yang. Equivalence analysis of highly scattering process and double random phase encryption process. Acta Physica Sinica, 2021, 70(13): 134201. doi: 10.7498/aps.70.20201903
    [5] Sun Shi-Feng. High-resolution coded aperture X-ray fluorescence imaging with separable masks. Acta Physica Sinica, 2020, 69(19): 198701. doi: 10.7498/aps.69.20200674
    [6] Qiao Zhi-Wei. The total variation constrained data divergence minimization model for image reconstruction and its Chambolle-Pock solving algorithm. Acta Physica Sinica, 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [7] Chen Yue, Liu Xiong-Ying, Wu Zhong-Tang, Fan Yi, Ren Zi-Liang, Feng Jiu-Chao. Denoising of contaminated chaotic signals based on collaborative filtering. Acta Physica Sinica, 2017, 66(21): 210501. doi: 10.7498/aps.66.210501
    [8] Zhang Lei-Lei, Tang Li-Jin, Zhang Mu-Yang, Liang Yan-Mei. Symmetric illumination in Fourier ptychography. Acta Physica Sinica, 2017, 66(22): 224201. doi: 10.7498/aps.66.224201
    [9] Han Yu, Li Lei, Yan Bin, Xi Xiao-Qi, Hu Guo-En. A half-covered helical cone-beam reconstruction algorithm based on the Radon inversion transformation. Acta Physica Sinica, 2015, 64(5): 058704. doi: 10.7498/aps.64.058704
    [10] He Lin-Yang, Liu Jing-Hong, Li Gang. Super resolution of aerial image by means of polyphase components reconstruction. Acta Physica Sinica, 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [11] Du Jin-Song, Gao Yang, Bi Xin, Qi Wei-Zhi, Huang Lin, Rong Jian. S-band microwave-Induced thermo-acoustic tomography system. Acta Physica Sinica, 2015, 64(3): 034301. doi: 10.7498/aps.64.034301
    [12] Lü Shan-Xiang, Feng Jiu-Chao. A phase space denoising method for chaotic maps. Acta Physica Sinica, 2013, 62(23): 230503. doi: 10.7498/aps.62.230503
    [13] Zhou Shu-Bo, Yuan Yan, Su Li-Juan. A regularized super resolution algorithm based on the double threshold Huber norm estimation. Acta Physica Sinica, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [14] Wang Xian-Chao, Yan Bin, Liu Hong-Kui, Li Lei, Wei Xing, Hu Guo-En. Efficient reconstruction from truncated data in circular cone-beam CT. Acta Physica Sinica, 2013, 62(9): 098702. doi: 10.7498/aps.62.098702
    [15] Wang Sheng, Zou Yu-Bin, Wen Wei-Wei, Li Hang, Liu Shu-Quan, Wang Hu, Lu Yuan-Rong, Tang Guo-You, Guo Zhi-Yu. Study of coded source neutron imaging based on a compact accelerator. Acta Physica Sinica, 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [16] Ning Fang-Li, He Bi-Jing, Wei Juan. An algorithm for image reconstruction based on lp norm. Acta Physica Sinica, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [17] Liu Ming, Zhang Shu-Lin, Li Hua, Qiu Yang, Zeng Jia, Zhang Guo-Feng, Wang Yong-Liang, Kong Xiang-Yan, Xie Xiao-Ming. Study of a selective averaging method for magnetocardiography-based noise suppression. Acta Physica Sinica, 2013, 62(9): 098501. doi: 10.7498/aps.62.098501
    [18] Yang Kun, Liu Xin-Xin, Li Xiao-Wei. Influence of data interpolation on positron emission tomography image tomography reconstruction. Acta Physica Sinica, 2013, 62(14): 147802. doi: 10.7498/aps.62.147802
    [19] Zhang Xing-Hua, Zhao Bao-Sheng, Miao Zhen-Hua, Zhu Xiang-Ping, Liu Yong-An, Zou Wei. Study of ultraviolet single photon imaging system. Acta Physica Sinica, 2008, 57(7): 4238-4243. doi: 10.7498/aps.57.4238
    [20] Wan Xiong, Yu Sheng-Lin, Wang Chang-Kun, Le Shu-Ping, Li Bing-Ying, He Xing-Dao. Emission spectral tomography algorithm based on multi-objective optimization and its application in plasma diagnosis. Acta Physica Sinica, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
Metrics
  • Abstract views:  5294
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2021
  • Accepted Date:  27 December 2021
  • Available Online:  21 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回