Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Real-time polarization compensation system for wavelength division multiplexing in low noise fiber channel based on single photon counting feedback

Cao Ruo-Lin Peng Qing-Xuan Wang Jin-Dong Chen Yong-Jie Huang Yun-Fei Yu Ya-Fei Wei Zheng-Jun Zhang Zhi-Ming

Citation:

Real-time polarization compensation system for wavelength division multiplexing in low noise fiber channel based on single photon counting feedback

Cao Ruo-Lin, Peng Qing-Xuan, Wang Jin-Dong, Chen Yong-Jie, Huang Yun-Fei, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming
PDF
HTML
Get Citation
  • The physical effects such as random birefringence of fiber optic channels due to environmental influences make the optical signals transmitted in them have sensitive polarization variations, which seriously affects the performance of polarization biased code quantum key distribution systems. In this paper, a low-noise fiber channel wavelength division multiplexing real-time polarization compensation system is presented, where single photon counting is used as a feedback signal. The system can acquire the fiber channel polarization change information by detecting the photon counting of the conjugate reference light. In the system, the compensation algorithm is designed to control the electric polarization controller to calibrate the polarization state of the quantum signal light under the corresponding polarization base in real time, and the stable fiber channel polarization compensation is successfully achieved. In order to verify the effectiveness of the compensation system, a quantum key distribution test based on BB84 protocol with a transmission distance of 25.2 km is conducted, and stable test results of up to 8 hours are obtained in the laboratory environment and the simulated metropolitan area network buried fiber environment, with the average quantum bit error rate being 0.52% and 1.25%, respectively. The experimental results show that this system can guarantee the stable operation of polarization-encoded quantum key distribution in the buried fiber environment in urban areas.
      Corresponding author: Wang Jin-Dong, wangjindong@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071186, 61771205), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313388), the Science and Technology Projects of Guangdong Province, China (Grant No. 2015B010128012), and the Key Laboratory Foundation of Guangdong Province, China (Grant No. 2020B1212060066).
    [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2001 Rev. mod. phys. 74 145

    [2]

    Scarani V, Bechmann P H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [3]

    Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4

    [4]

    Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302Google Scholar

    [5]

    Liu X B, Liao C J, Mi J L, Wang J D, Liu S H 2008 Phys. Lett. A. 373 54Google Scholar

    [6]

    Wang S, Wei C, Yin Z Q, He D Y, Cong H, Hao P L, Guan-Jie F Y, Wang C, Zhang L J, Jie K, Liu S F, Zhou Z, Wang Y G, Guo G C, Han Z F 2018 Opt. Lett. 43 2030Google Scholar

    [7]

    Zhu L, Zhu G X, Wang A D, Wang L L, Ai J Z, Chen S, Du C, Liu J, Yu S Y, Wang J 2018 Opt. Lett. 43 1890Google Scholar

    [8]

    Boucher W, Debuisschert T 2006 Phys. Rev. A 72 1

    [9]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptol. 5 3Google Scholar

    [10]

    Heffner B L 1992 IEEE Photon. Tech. L. 4 1066Google Scholar

    [11]

    Xavier G B, Walenta N, Vilela de Faria G, Temporão G P, Gisin N, Zbinden H, von der Weid J P 2009 New J. Phys. 11 045015Google Scholar

    [12]

    Ding Y Y, Hua C, Wang S, He D Y, Yin Z Q, Wei C, Zhou Z, Guo G C, Han Z F 2017 Opt. Express 25 27923Google Scholar

    [13]

    Chen J, Wu G, Li Y, Wu E, Zeng H P 2007 Opt. Express 15 17928Google Scholar

    [14]

    Chen J, Wu G, Xu L, Gu X, Zeng H P 2009 New J. Phys. 11 065004Google Scholar

    [15]

    Agnesi C, Avesani M, Calderaro L, Stanco A, Foletto G, Zahidy M, Scriminich A, Vedovato F, Vallone G, Villoresi P 2020 Optica 7 284Google Scholar

    [16]

    Xavier G B, Vilela de Faria G, Temporão G P, & von der Weid J P 2008 Opt. Express 16 1867Google Scholar

    [17]

    Li D D, Gao S, Li G C, Lu X, Wang L W, Lu C B, Yao X, Zhao Z Y, Yan L C, Chen Z Y 2018 Opt. Express 26 22793Google Scholar

    [18]

    Ding Y Y, Chen W, Chen H, Wang C, Li Y P, Yin Z Q, Wang S, Guo G C, Han Z F 2017 Opt. Lett. 42 1023Google Scholar

    [19]

    Shi Y C, Thar S M, Poh H S, Grieve J A, Kurtsiefer C, Ling A 2020 Appl. Phys. Lett. 117 4002

    [20]

    Shi Y C, Poh H S, Ling A, Kurtsiefer C 2021 Opt. Express 29 37075Google Scholar

    [21]

    廖延彪 2003 偏振光学 (北京: 科学出版社) 第45页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p45 (in Chinese)

    [22]

    张启业, 朱勇, 苏洋, 周 华, 经继松 2013 光学学报 33 23

    Zhang Q Y, Zhu Y, Su Y, Zhou H, Jing J S 2013 Acta Opt. Sin. 33 23

    [23]

    王剑, 朱勇, 周华, 苏洋, 张志永 2015 光学学报 35 76

    Wang J, Zhu Y, Zhou H, Su Y, Zhang Z Y 2015 Acta Opt. Sin. 35 76

    [24]

    Yan Y, Geng C, Li F, Huang G, Li X Y 2017 IEEE Photon. Technol. Lett. 29 945Google Scholar

    [25]

    周华, 蒲涛, 苏洋, 徐智勇, 沈荟萍, 赵继勇, 王艺敏, 吴传信 2017 2017量子信息技术与应用研讨会论文集 中国北京 2017年6月15—16日 第68页

    Zhou H, Pu T, Su Y, Xu Z Y, Shen H P, Zhao J Y, Wang Y M, Wu C X 2017 2017 Quantum Information Technology and Application Symposium proceedings Beijing China June 15–16, 2017 p68 (in Chinese)

    [26]

    Xi L X, Zhang X G, Tang X F, Weng X A, Tian F 2010 Chin. Opt. Lett. 8 804Google Scholar

  • 图 1  SOP在邦加球上的补偿过程示意图

    Figure 1.  Compensation process of SOP on Poincaré sphere.

    图 2  低噪声光纤信道WDM实时偏振补偿系统示意图

    Figure 2.  Schematic diagram of low noise fiber channel WDM real-time polarization compensation system.

    图 3  偏振补偿程序流程图

    Figure 3.  Flow chart of polarization compensation program.

    图 4  偏振补偿模块未启动时量子信号光$ \left| H \right\rangle $偏振变化引起QBER变化情况 (a) 测试90 min无扰偏器时QBER变化情况; (b) 测试10 min有扰偏器时QBER变化情况

    Figure 4.  QBER variation of quantum signal caused by polarization drift without compensation: (a) QBER variation in 90 minutes without scrambler; (b) QBER variation in 10 minutes with scrambler.

    图 5  运行补偿程序时量子信号光的4种偏振态QBER的变化 (a) 量子信号光$ \left| H \right\rangle $QBER的变化; (b) 量子信号光$ \left| V \right\rangle $QBER的变化; (c) 量子信号光$ \left| + \right\rangle $QBER的变化; (d) 量子信号光$ \left| - \right\rangle $QBER的变化

    Figure 5.  QBER variation of quantum signal in four polarization states when running the compensation program: (a) QBER variation of quantum signal in $ \left| H \right\rangle $; (b) QBER variation of quantum signal in $ \left| V \right\rangle $; (c) QBER variation of quantum signal in $ \left| + \right\rangle $; (d) QBER variation of quantum signal in $ \left| - \right\rangle $.

    图 6  启动扰偏器后运行补偿程序时量子信号光的4种偏振态QBER变化 (a) 量子信号光$ \left| H \right\rangle $QBER的变化; (b) 量子信号光$ \left| V \right\rangle $QBER的变化; (c) 量子信号光$ \left| + \right\rangle $QBER的变化; (d) 量子信号光$ \left| - \right\rangle $QBER的变化

    Figure 6.  QBER variation of the quantum signal in four polarization states after starting the scrambler and running the compensation program: (a) QBER variation of quantum signal in $ \left| H \right\rangle $; (b) QBER variation of quantum signal in $ \left| V \right\rangle $; (c) QBER variation of quantum signal in $ \left| + \right\rangle $; (d) QBER variation of quantum signal in $ \left| - \right\rangle $.

  • [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2001 Rev. mod. phys. 74 145

    [2]

    Scarani V, Bechmann P H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [3]

    Bennett C H, Brassard G 1984 IEEE International Conference on Computers New York 198 4

    [4]

    Wang J D, Qin X J, Jiang Y Z, Wang X J, Chen L W, Zhao F, Wei Z J, Zhang Z M 2016 Opt. Express 24 8302Google Scholar

    [5]

    Liu X B, Liao C J, Mi J L, Wang J D, Liu S H 2008 Phys. Lett. A. 373 54Google Scholar

    [6]

    Wang S, Wei C, Yin Z Q, He D Y, Cong H, Hao P L, Guan-Jie F Y, Wang C, Zhang L J, Jie K, Liu S F, Zhou Z, Wang Y G, Guo G C, Han Z F 2018 Opt. Lett. 43 2030Google Scholar

    [7]

    Zhu L, Zhu G X, Wang A D, Wang L L, Ai J Z, Chen S, Du C, Liu J, Yu S Y, Wang J 2018 Opt. Lett. 43 1890Google Scholar

    [8]

    Boucher W, Debuisschert T 2006 Phys. Rev. A 72 1

    [9]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptol. 5 3Google Scholar

    [10]

    Heffner B L 1992 IEEE Photon. Tech. L. 4 1066Google Scholar

    [11]

    Xavier G B, Walenta N, Vilela de Faria G, Temporão G P, Gisin N, Zbinden H, von der Weid J P 2009 New J. Phys. 11 045015Google Scholar

    [12]

    Ding Y Y, Hua C, Wang S, He D Y, Yin Z Q, Wei C, Zhou Z, Guo G C, Han Z F 2017 Opt. Express 25 27923Google Scholar

    [13]

    Chen J, Wu G, Li Y, Wu E, Zeng H P 2007 Opt. Express 15 17928Google Scholar

    [14]

    Chen J, Wu G, Xu L, Gu X, Zeng H P 2009 New J. Phys. 11 065004Google Scholar

    [15]

    Agnesi C, Avesani M, Calderaro L, Stanco A, Foletto G, Zahidy M, Scriminich A, Vedovato F, Vallone G, Villoresi P 2020 Optica 7 284Google Scholar

    [16]

    Xavier G B, Vilela de Faria G, Temporão G P, & von der Weid J P 2008 Opt. Express 16 1867Google Scholar

    [17]

    Li D D, Gao S, Li G C, Lu X, Wang L W, Lu C B, Yao X, Zhao Z Y, Yan L C, Chen Z Y 2018 Opt. Express 26 22793Google Scholar

    [18]

    Ding Y Y, Chen W, Chen H, Wang C, Li Y P, Yin Z Q, Wang S, Guo G C, Han Z F 2017 Opt. Lett. 42 1023Google Scholar

    [19]

    Shi Y C, Thar S M, Poh H S, Grieve J A, Kurtsiefer C, Ling A 2020 Appl. Phys. Lett. 117 4002

    [20]

    Shi Y C, Poh H S, Ling A, Kurtsiefer C 2021 Opt. Express 29 37075Google Scholar

    [21]

    廖延彪 2003 偏振光学 (北京: 科学出版社) 第45页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p45 (in Chinese)

    [22]

    张启业, 朱勇, 苏洋, 周 华, 经继松 2013 光学学报 33 23

    Zhang Q Y, Zhu Y, Su Y, Zhou H, Jing J S 2013 Acta Opt. Sin. 33 23

    [23]

    王剑, 朱勇, 周华, 苏洋, 张志永 2015 光学学报 35 76

    Wang J, Zhu Y, Zhou H, Su Y, Zhang Z Y 2015 Acta Opt. Sin. 35 76

    [24]

    Yan Y, Geng C, Li F, Huang G, Li X Y 2017 IEEE Photon. Technol. Lett. 29 945Google Scholar

    [25]

    周华, 蒲涛, 苏洋, 徐智勇, 沈荟萍, 赵继勇, 王艺敏, 吴传信 2017 2017量子信息技术与应用研讨会论文集 中国北京 2017年6月15—16日 第68页

    Zhou H, Pu T, Su Y, Xu Z Y, Shen H P, Zhao J Y, Wang Y M, Wu C X 2017 2017 Quantum Information Technology and Application Symposium proceedings Beijing China June 15–16, 2017 p68 (in Chinese)

    [26]

    Xi L X, Zhang X G, Tang X F, Weng X A, Tian F 2010 Chin. Opt. Lett. 8 804Google Scholar

  • [1] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Asymmetric channel phase matching quantum key distribution. Acta Physica Sinica, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [2] Sang Di, Xu Ming-Feng, An Qiang, Fu Yun-Qi. Freeform wavelength division multiplexing metagrating based on topology optimization. Acta Physica Sinica, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [3] Shen Qi-Qi, Zhang Yi, Wang Jin-Dong, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Experimental research on disturbance resistant polarization modulation mode for quantum key distribution. Acta Physica Sinica, 2021, 70(18): 180302. doi: 10.7498/aps.70.20210749
    [4] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [5] Ying Kang, Gui You-Zhen, Sun Yan-Guang, Cheng Nan, Xiong Xiao-Feng, Wang Jia-Liang, Yang Fei, Cai Hai-Wen. Key technology of high-precision time frequency transfer via 200 km desert urban fiber link. Acta Physica Sinica, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [6] Chen Yan-Hui, Wang Jin-Dong, Du Cong, Ma Rui-Li, Zhao Jia-Yu, Qin Xiao-Juan, Wei Zheng-Jun, Zhang Zhi-Ming. Eavesdropping and countermeasures for backflash side channel in fiber polarization-coded quantum key distribution. Acta Physica Sinica, 2019, 68(13): 130301. doi: 10.7498/aps.68.20190464
    [7] Zhou Fei, Yong Hai-Lin, Li Dong-Dong, Yin Juan, Ren Ji-Gang, Peng Cheng-Zhi. Study on quantum key distribution between different media. Acta Physica Sinica, 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [8] Ye Tao, Xu Xu-Ming. The design and optimization of high efficiency heterostructure four-wavelength wavelength division multiplexing. Acta Physica Sinica, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [9] Wang Jin-Dong, Wei Zheng-Jun, Zhang Hui, Zhang Hua-Ni, Chen Shuai, Qin Xiao-Juan, Guo Jian-Ping, Liao Chang-Jun, Liu Song-Hao. The influence of the time delay through long trunk fiber on the phase-coding quantum key distribution system. Acta Physica Sinica, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [10] Zhang Jian-Zhong, Wang An-Bang, Wang Yun-Cai. Wavelength division multiplexing of chaotic optical communication and OC-48 fiber communication. Acta Physica Sinica, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [11] Zhang Jing, Wang Fa-Qiang, Zhao Feng, Lu Yi-Qun, Liu Song-Hao. Quantum key distribution based on time coding and phase coding. Acta Physica Sinica, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [12] Hu Hua-Peng, Zhang Jing, Wang Jin-Dong, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao, Lu Wei. Experimental quantum key distribution with double protocol. Acta Physica Sinica, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [13] Chen Xia, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Li Ming-Ming, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. A phase modulated QKD system with two quantum cryptography protocols. Acta Physica Sinica, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [14] Feng Fa-Yong, Zhang Qiang. Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [15] Li Qi-Liang, Sun Li-Li, Chen Jun-Lang, Li Qing-Shan, Tang Xiang-Hong, Qian Sheng, Lin Li-Bin. Theoretical analysis of cross-phase modulational sideband instability in wavelength-division multiplexed system with periodic dispersion managed fiber links. Acta Physica Sinica, 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [16] Zheng Li-Ming, Wang Fa-Qiang, Liu Song-Hao. The influence of dispersion and loss on quantum key distribution system. Acta Physica Sinica, 2007, 56(4): 2180-2183. doi: 10.7498/aps.56.2180
    [17] Chen Jie, Li Yao, Wu Guang, Zeng He-Ping. Stable quantum key distribution with polarization control. Acta Physica Sinica, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [18] Ma Hai-Qiang, Li Ya-Ling, Zhao Huan, Wu Ling-An. A quantum key distribution system based on two polarization beam splitters. Acta Physica Sinica, 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
    [19] Qin Xiao-Yun, Huang Bi-Qin, Chen Hai-Xing, Yang Li-Gong, Gu Pei-Fu. Wavelength demultiplexer using the spatial dispersion of repeated-period double-chirped structures*. Acta Physica Sinica, 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
    [20] LIANG CHUANG, FU DONG-HAO, LIANG BING, LIAO JING, WU LING-AN, YAO DE-CHENG, Lü SHU-WANG. QUANTUM KEY DISTRIBUTION OVER 1.1km IN AN 850nm EXPERIMENTAL ALL-FIBER SYSTEM. Acta Physica Sinica, 2001, 50(8): 1429-1433. doi: 10.7498/aps.50.1429
Metrics
  • Abstract views:  3929
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2022
  • Accepted Date:  21 February 2022
  • Available Online:  24 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回