-
Semiconductor disk lasers (SDLs) have advantages of high output power and good beam quality. Their flexible external cavity provides convenience for inserting additional optical element to start mode locking and produce ultra-short pulse train with duration from picosecond to femtosecond. However, the very short lifetime in a range from about a few nanoseconds to tens of nanoseconds of the carrier in semiconductor gain medium limits the decrease of pulse repetition rate, thus restricting the increase of peak power of the mode-locked laser pulse to some extent. In this work, by using the relatively shallow In0.2GaAs quantum wells, which have a relatively long carrier lifetime in the active region of gain chip, as well as the particularly designed semiconductor saturable absorption mirror (SESAM) that has a relatively small saturation flux, a passively mode-locked SDL with low repetition rate and high peak power is demonstrated. The used six-mirror cavity has a spot radius of about 200 μm on the chip and a 40 μm spot on the SESAM, and the total cavity length is about 1.92 m. The SESAM passively mode-locked SDL produces a stable pulse train with a lowest repetition rate of 78 MHz. When the temperature is 12 ℃ and the transmittance of the output coupler is T = 3%, an average output power value of 2.1 W and a pulse duration of 2.08 ps are achieved. The corresponding pulse peak power reaches 12.8 kW, which is about twice the reported highest peak power in an SESAM mode-locked SDL. When T = 2% and T = 5%, the obtained average output power values are 1.34 W and 1.62 W respectively, and the corresponding pulse peak power values are 8.17 kW and 9.88 kW. Based on the values reported in the literature and the results of pulse repetition rate in our experiments, the estimated lifetime of the carriers of the In0.2GaAs quantum wells in the active region of the gain used chip is 16.4 ns. This high peak power mode-locked semiconductor disk laser has important potential applications in biomedical photonics, chemistry, and nonlinear microscopy.
-
Keywords:
- semiconductor disk laser /
- semiconductor saturable absorption mirror /
- mode-locked /
- peak power
[1] 李玉娇, 宗楠, 彭钦军 2018 激光与光电子学进展 55 49Google Scholar
Li Y J, Zong N, Peng Q J 2018 Laser Optoelectron. Prog. 55 49Google Scholar
[2] Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar
[3] Guina M, Rantamäki A, Härkönen A 2017 J. Phys. D Appl. Phys. 50 383001Google Scholar
[4] Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435Google Scholar
[5] Hoogland S, Dhanjal S, Tropper A C, Roberts S J, Häring R, Paschotta R, Keller U 2000 IEEE Photonic. Tech. L. 12 1135Google Scholar
[6] Garnache A, Hoogland S, Tropper A C, Sagnes I, Saint-Girons G, Roberts J S 2002 Appl. Phys. Lett. 80 3892Google Scholar
[7] Klopp P, Griebner U, Zorn M, Weyers M 2011 Appl. Phys. Lett. 98 071103Google Scholar
[8] Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A, Tropper A C 2009 Nat. Photonics 3 729Google Scholar
[9] Scheller M, Wang T L, Kunert B, Stolz W, Koch S W, Moloney J V 2012 Electron. Lett. 48 588Google Scholar
[10] Wilcox K G, Tropper A C, Beere H E, Ritchie D A, Kunert B, Heinen B, Stolz W 2013 Opt. Express 21 1599Google Scholar
[11] Baker C W, Scheller M, Laurain A, Ruiz-Perez A, Stolz W, Addamane S, Balakrishnan G, Koch S W, Jones R J, Moloney J V 2017 IEEE Photonic. Tech. L. 29 326Google Scholar
[12] Kornaszewski L, Maker G, Malcolm G P A, Butkus M, Rafailov E U, Hamilton C J 2012 Laser Photon. Rev. 6 L20Google Scholar
[13] Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U 2006 IEEE J. Quantum Elect. 42 838Google Scholar
[14] Saarinen E J, Rantamaki A, Chamorovskiy A, Okhotnikov O G 2012 Electron. Lett. 48 1355Google Scholar
[15] Butkus M, Viktorov E A, Erneux T, Hamilton C J, Maker G, Malcolm G P A, Rafailov E U 2013 Opt. Express 21 25526Google Scholar
[16] Wilcox K G, Quarterman A H, Beere H E, Ritchie D A, Tropper A C 2011 Opt. Express 19 23453Google Scholar
[17] Chen Y C, Wang P, Coleman J J, Bour D P, Lee K K, Waters R G 1991 IEEE J. Quantum Elect. 27 1451Google Scholar
[18] Ehrlich J E, Neilson D T, Walker A C, Kennedy G T, Grant R S, Sibbett W, Hopkinson M 1993 Semicond. Sci. Technol. 8 307Google Scholar
[19] Alfieri C G E, Waldburger D, Link S M, Gini E, Golling M, Eisenstein G, Keller U 2017 Opt. Express 25 6402Google Scholar
[20] Keller U 1994 Appl. Phys. B 58 347Google Scholar
[21] Antal P G, Szipőcs R 2012 Appl. Phys. B 107 17Google Scholar
[22] Seres E, Seres J, Spielmann C 2012 Opt. Express 20 6185Google Scholar
[23] Carlin C Z, Bradshaw G K, Samberg J P, Colter P C, Bedair S M 2013 IEEE T. Electron Dev. 60 2532Google Scholar
[24] Ongstad A P, Gallant D J, Dente G C 1995 Appl. Phys. Lett. 66 2730Google Scholar
[25] Ongstad A P, Tilton M L, Bochove E J, Dente G C 1996 J. Appl. Phys. 80 2866Google Scholar
-
表 1 已报道锁模SDL的重要成果一览表
Table 1. List of important results of mode-locked SDL have been reported.
-
[1] 李玉娇, 宗楠, 彭钦军 2018 激光与光电子学进展 55 49Google Scholar
Li Y J, Zong N, Peng Q J 2018 Laser Optoelectron. Prog. 55 49Google Scholar
[2] Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar
[3] Guina M, Rantamäki A, Härkönen A 2017 J. Phys. D Appl. Phys. 50 383001Google Scholar
[4] Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435Google Scholar
[5] Hoogland S, Dhanjal S, Tropper A C, Roberts S J, Häring R, Paschotta R, Keller U 2000 IEEE Photonic. Tech. L. 12 1135Google Scholar
[6] Garnache A, Hoogland S, Tropper A C, Sagnes I, Saint-Girons G, Roberts J S 2002 Appl. Phys. Lett. 80 3892Google Scholar
[7] Klopp P, Griebner U, Zorn M, Weyers M 2011 Appl. Phys. Lett. 98 071103Google Scholar
[8] Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A, Tropper A C 2009 Nat. Photonics 3 729Google Scholar
[9] Scheller M, Wang T L, Kunert B, Stolz W, Koch S W, Moloney J V 2012 Electron. Lett. 48 588Google Scholar
[10] Wilcox K G, Tropper A C, Beere H E, Ritchie D A, Kunert B, Heinen B, Stolz W 2013 Opt. Express 21 1599Google Scholar
[11] Baker C W, Scheller M, Laurain A, Ruiz-Perez A, Stolz W, Addamane S, Balakrishnan G, Koch S W, Jones R J, Moloney J V 2017 IEEE Photonic. Tech. L. 29 326Google Scholar
[12] Kornaszewski L, Maker G, Malcolm G P A, Butkus M, Rafailov E U, Hamilton C J 2012 Laser Photon. Rev. 6 L20Google Scholar
[13] Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U 2006 IEEE J. Quantum Elect. 42 838Google Scholar
[14] Saarinen E J, Rantamaki A, Chamorovskiy A, Okhotnikov O G 2012 Electron. Lett. 48 1355Google Scholar
[15] Butkus M, Viktorov E A, Erneux T, Hamilton C J, Maker G, Malcolm G P A, Rafailov E U 2013 Opt. Express 21 25526Google Scholar
[16] Wilcox K G, Quarterman A H, Beere H E, Ritchie D A, Tropper A C 2011 Opt. Express 19 23453Google Scholar
[17] Chen Y C, Wang P, Coleman J J, Bour D P, Lee K K, Waters R G 1991 IEEE J. Quantum Elect. 27 1451Google Scholar
[18] Ehrlich J E, Neilson D T, Walker A C, Kennedy G T, Grant R S, Sibbett W, Hopkinson M 1993 Semicond. Sci. Technol. 8 307Google Scholar
[19] Alfieri C G E, Waldburger D, Link S M, Gini E, Golling M, Eisenstein G, Keller U 2017 Opt. Express 25 6402Google Scholar
[20] Keller U 1994 Appl. Phys. B 58 347Google Scholar
[21] Antal P G, Szipőcs R 2012 Appl. Phys. B 107 17Google Scholar
[22] Seres E, Seres J, Spielmann C 2012 Opt. Express 20 6185Google Scholar
[23] Carlin C Z, Bradshaw G K, Samberg J P, Colter P C, Bedair S M 2013 IEEE T. Electron Dev. 60 2532Google Scholar
[24] Ongstad A P, Gallant D J, Dente G C 1995 Appl. Phys. Lett. 66 2730Google Scholar
[25] Ongstad A P, Tilton M L, Bochove E J, Dente G C 1996 J. Appl. Phys. 80 2866Google Scholar
Catalog
Metrics
- Abstract views: 1876
- PDF Downloads: 118
- Cited By: 0