Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low repetition rate passively mode-locked semiconductor disk laser

He Liang Peng Xue-Fang Shen Xiao-Yu Zhu Ren-Jiang Wang Tao Jiang Li-Dan Tong Cun-Zhu Song Yan-Rong Zhang Peng

Citation:

Low repetition rate passively mode-locked semiconductor disk laser

He Liang, Peng Xue-Fang, Shen Xiao-Yu, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng
PDF
Get Citation
  • Semiconductor disk lasers (SDLs) have advantages of high output power and good beam quality. Its flexible external cavity provides convenience for inserting additional optical element to start mode locking and produce ultra-short pulse train with duration from picosecond to femtosecond. However, the very short lifetime of about a few nanoseconds to tens of nanosecond of the carrier in semiconductor gain medium limits the decrease of pulse repetition rate, thus restrict the increase of peak power of the mode-locked laser pulse to some extent. In this work, by using the relatively shallow In0.2GaAs quantum wells, which has a relatively long carrier lifetime in the active region of gain chip, as well as the particularly designed semiconductor saturable absorption mirror (SESAM) that with a relatively small saturation flux, a passively mode-locked SDL with low repetition rate and high peak power is demonstrated. The used six-mirror cavity has a spot radius of about 200 μm on the chip and a 40 μm spot on the SESAM, and the total cavity length is about of 1.92 m. The SESAM passively mode-locked SDL produces a stable pulses train with the lowest repetition rate of 78 MHz. When the temperature is 12℃ and the transmittance of the output coupler is T = 3%, an average output power of 2.1 W and a pulse duration of 2.08 ps are achieved. The corresponding pulse peak power reaches 12.8 kW, which is about twice of the reported highest peak power in a SESAM mode-locked SDL. When T = 2% and T = 5%, the obtained average output power are 1.34 W and 1.62 W respectively, and the corresponding pulse peak power are 8.17 kW and 9.88 kW. Based on the reported literatures and the results of pulse repetition rate in our experiments, the estimated lifetime of the carriers of the In0.2GaAs quantum wells in the active region of the gain used chip is 16.4 ns. This high peak power mode-locked semiconductor disk laser has important potential applications in biomedical photonics, chemistry, and nonlinear microscopy.
  • [1]

    Li Y J, Zong N, Peng Q J 2018 Laser & Optoelectronics Progress 55 49 (in Chinese) [李玉娇, 宗楠, 彭钦军 2018 激光与光电子学进展 55 49]

    [2]

    Rahimi-Iman A 2016 J. Optics-UK 18 093003

    [3]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phys. D Appl. Phys. 50 383001

    [4]

    Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A 1996 IEEE J. Sel. Top. Quant. 2 435

    [5]

    Hoogland S, Dhanjal S, Tropper A C, Roberts S J, Häring R, Paschotta R, Keller U 2000 IEEE Photonic. Tech. L. 12 1135

    [6]

    Garnache A, Hoogland S, Tropper A C, Sagnes I, Saint-Girons G, Roberts J S 2002 Appl. Phys. Lett. 80 3892

    [7]

    Klopp P, Griebner U, Zorn M, Weyers M 2011 Appl. Phys. Lett. 98 071103

    [8]

    Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A, Tropper A C 2009 Nat. Photonics 3 729

    [9]

    Scheller M, Wang T L, Kunert B, Stolz W, Koch S W, Moloney J V 2012 Electron. Lett. 48 588

    [10]

    Wilcox K G, Tropper A C, Beere H E, Ritchie D A, Kunert B, Heinen B, Stolz W 2013 Opt. Express 21 1599

    [11]

    Baker C W, Scheller M, Laurain A, Ruiz-Perez A, Stolz W, Addamane S, Balakrishnan G, Koch S W, Jones R J, Moloney J V 2017 IEEE Photonic. Tech. L. 29 326

    [12]

    Kornaszewski L, Maker G, Malcolm G P A, Butkus M, Rafailov E U, Hamilton C J 2012 Laser Photon. Rev. 6 L20

    [13]

    Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U 2006 IEEE J. Quantum Elect. 42 838

    [14]

    Saarinen E J, Rantamaki A, Chamorovskiy A, Okhotnikov O G 2012 Electron. Lett. 48 1355

    [15]

    Butkus M, Viktorov E A, Erneux T, Hamilton C J, Maker G, Malcolm G P A, Rafailov E U 2013 Opt. Express 21 25526

    [16]

    Wilcox K G, Quarterman A H, Beere H E, Ritchie D A, Tropper A C 2011 Opt. Express 19 23453

    [17]

    Chen Y C, Wang P, Coleman J J, Bour D P, Lee K K, Waters R G 1991 IEEE J. Quantum Elect. 27 1451

    [18]

    Ehrlich J E, Neilson D T, Walker A C, Kennedy G T, Grant R S, Sibbett W, Hopkinson M 1993 Semicond. Sci. Technol. 8 307

    [19]

    Alfieri C G E, Waldburger D, Link S M, Gini E, Golling M, Eisenstein G, Keller U 2017 Opt. Express 25 6402

    [20]

    Keller U 1994 Appl. Phys. B 58 347

    [21]

    Antal P G, Szipőcs R 2012 Appl. Phys. B 107 17

    [22]

    Seres E, Seres J, Spielmann C 2012 Opt. Express 20 6185

    [23]

    Carlin C Z, Bradshaw G K, Samberg J P, Colter P C, Bedair S M 2013 IEEE T. Electron Dev. 60 2532

    [24]

    Ongstad A P, Gallant D J, Dente G C 1995 Appl. Phys. Lett. 66 2730

    [25]

    Ongstad A P, Tilton M L, Bochove E J, Dente G C 1996 J. Appl. Phys. 80 2866

Metrics
  • Abstract views:  156
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Available Online:  25 April 2024

/

返回文章
返回