Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

509 nm high power wide-tuned external cavity surface emitting laser

Wang Tao Peng Xue-Fang He Liang Shen Xiao-Yu Zhu Ren-Jiang Jiang Li-Dan Tong Cun-Zhu Song Yan-Rong Zhang Peng

Citation:

509 nm high power wide-tuned external cavity surface emitting laser

Wang Tao, Peng Xue-Fang, He Liang, Shen Xiao-Yu, Zhu Ren-Jiang, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng
cstr: 32037.14.aps.73.20240499
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High power widely tunable green lasers have potential applications in many fields such as biomedicine, lidar, laser spectroscopy, laser display, underwater wireless optical communication, and fine processing of nonferrous metals. Vertical-external-cavity surface-emitting lasers, also known as semiconductor disk lasers, have the advantages of high power, good beam quality, and wide bandwidth of gain medium. In this work, a gain chip with a reverse-growth epitaxy structure and an emitting wavelength of 1018 nm is designed. In the DBR reflection spectrum, a bandwidth of 74 nm is achieved above a reflectivity of greater than 99.1%, laying a solid foundation for achieving high-power widely tunable output. The laser cavity combines a 1018 nm semiconductor gain chip, a folded mirror, and a plane mirror to construct a compact V-type resonant cavity. A class-I phase-matched LBO nonlinear crystal with a length of 10 mm is placed at the beam waist of the cavity to realize an efficient frequency doubling process to produce a 509 nm green laser. To meet the requirement for the polarization during frequency conversion and to tune the oscillating wavelength of the laser, a birefringent filter (BRF) is employed in the laser resonant cavity. When the thickness of the used BRF is 1 mm, the obtained wavelength tuning range of the fundamental laser and the frequency doubled green laser are 47.1 nm and 20.1 nm, respectively, showing a good tuning capability of the laser. The laser’s performance varies with the thickness of the BRF. When using a 2 mm BRF, a maximum power output of the frequency-doubled green laser reaches 8.23 W during continuous tuning, indicating an ideal compatibility of wide tuning characteristics with a high power output. Meanwhile, its beam quality M 2 factors are 1.00 and 1.03 in the x- and y-direction, respectively, demonstrating a near diffraction-limited excellent beam quality. This green laser also possesses a frequency doubling conversion efficiency of up to 68.2%, which can efficiently converse the fundamental laser into the frequency doubled green laser. The optical-to-optical conversion efficiency from the absorbed pump light to the frequency-doubled green light also reaches 16.6%. Meanwhile, from the spectral linewidths of the green lasers under different thickness values of BRFs it is found that the thicker the BRF, the narrower the laser line width is, which is consistent with the theoretical result.
      Corresponding author: Zhang Peng, zhangpeng2010@cqnu.edu.cn
    • Funds: Project supported by the Cooperation Project between Chongqing Local Universities and Institutions of Chinese Academy of Sciences, Chongqing Municipal Education Commission, China (Grant No. HZ2021007), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJQN202200557, KJQN202300525), the National Natural Science Foundation of China (Grant Nos. 61975003, 61790584, 62025506), and the Chongqing Normal University Foundation, China (Grant No. 23XLB003).
    [1]

    徐庆扬, 陈少武 2004 物理 33 508Google Scholar

    Xu Q Y, Chen S W 2004 Physics 33 508Google Scholar

    [2]

    周远航, 张健, 冯爱新, 尚大智, 陈云, 唐杰, 杨海华 2021 中国激光 48 0602116Google Scholar

    Zhou Y H, Zhang J, Feng A X, Shang D Z, Chen Y, Tang J, Yang H H 2021 Chin. J. Lasers 48 0602116Google Scholar

    [3]

    金熙, 张磊, 周颖, 王磊, 曹芬芬 2019 中国激光医学杂志 28 308Google Scholar

    Jin X, Zhang L, Zhou Y, Wang L, Chao F F 2019 Chin. J. Laser Med. Surg. 28 308Google Scholar

    [4]

    聂伟, 阚瑞峰, 杨晨光, 陈兵, 许振宇, 刘文清 2018 中国激光 45 0911001Google Scholar

    Nie W, Kan R F, Yang C G, Chen B, Xu Z Y, Liu W Q 2018 Chin. J. Lasers 45 0911001Google Scholar

    [5]

    林宏, 王新民, 卢金军, 李卫中 2010 激光与光电子学进展 47 120101Google Scholar

    Lin H, Wang X M, Lu J J, Li W Z 2010 Laser Optoelectron. P. 47 120101Google Scholar

    [6]

    Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar

    [7]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phy. D Appl. Phys. 50 383001Google Scholar

    [8]

    Mangold M, Wittwer V J, Sieber O D 2012 Opt. Express 20 4136Google Scholar

    [9]

    Chang-Hasnain C J. 2000 IEEE J. Sel. Top. Quant. 6 978Google Scholar

    [10]

    李慧娟, 张淼, 李凤琴 2016 中国激光 43 0302003Google Scholar

    Li H J, Zhang M, Li F Q 2016 Chin. J. Lasers 43 0302003Google Scholar

    [11]

    Wu Y, Shen Y, Addamane S, Reno J L, Williams B S 2021 Opt. Express 29 34695Google Scholar

    [12]

    Borgentun C, Bengtsson J, Larsson A, Demaria F, Hein A, Unger P 2010 Semiconductor Lasers and Laser Dynamics IV. SPIE Brussels Belgium April 3, 2010 p7720247

    [13]

    Borgentun C, Hessenius C, Bengtsson J, Fallahi M, Larsson A 2011 IEEE Photonics J. 3 946Google Scholar

    [14]

    Nakdali D A, Gaafar M, Shakfa M K, Zhang F, Vaupel M, Fedorova K A, Koch M 2015 IEEE Photonic. Tech. L. 27 1128Google Scholar

    [15]

    Broda A, Wójcik-Jedlińska A, Sankowska I, Wasiak M, Wieckowska M, Muszalski J 2017 IEEE Photonic. Tech. L. 29 2215Google Scholar

    [16]

    Qiu X L, Wang C, Li J, Li C C, Xie X Y, Wang Y L, Wei X 2022 IEEE Photonics J. 14 1545707Google Scholar

    [17]

    Maclean A J, Kemp A J, Calvez S, Kim J Y, Kim T, Dawson M D, Burns D 2008 IEEE J. Quantum Elect. 44 216Google Scholar

    [18]

    Lin J P, Helen M P, David J S, Craig J H, Malcolm-Graeme P A 2012 Opt. Express 20 5219Google Scholar

    [19]

    Hein A, Menzel S, Unger P 2012 Appl. Phys. Lett. 101 111109Google Scholar

    [20]

    Lukowski M, Hessenius C, Fallahi M 2014 IEEE J. Sel. Top. Quant. 21 432Google Scholar

    [21]

    邱小浪, 陈雪花, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 中国激光 46 0401002Google Scholar

    Qiu X L, Chen X H, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Chin. J. Lasers 46 0401002Google Scholar

    [22]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

    [23]

    Smith A V 2018 Crystal Nonlinear Optics: With SNLO Examples (Albuquerque: AS-Photonics

    [24]

    Smith A V 2003 Proc. SPIE 4972 50Google Scholar

  • 图 1  (a) VECSEL外延片结构示意图; (b) 增益芯片的反射谱及荧光谱

    Figure 1.  (a) Schematics of the epitaxial structure of the VECSEL wafer; (b) the reflection spectrum and the PL spectrum of the gain chip.

    图 2  (a) 倍频绿光VECSEL的V型谐振腔结构图; (b) 实验装置实物图

    Figure 2.  (a) The V-type resonant cavity of the frequency-doubled green VECSEL; (b) the photograph of the experimental setup.

    图 3  V型谐振腔内基频激光腔模半径随位置的变化

    Figure 3.  Changes of the cavity mode in the V-type cavity with various position.

    图 4  BRF厚度为1 , 2, 4 mm时基频激光的波长调谐范围

    Figure 4.  Tuning range of the fundamental laser with BRF thicknesses of 1, 2, and 4 mm.

    图 5  BRF厚度为1, 2, 4 mm倍频绿光的波长调谐范围

    Figure 5.  Tuning range of the frequency-doubled green laser with BRF thicknesses of 1, 2, and 4 mm.

    图 6  腔内插入厚度为1, 2, 4 mm的BRF时倍频绿光的输出功率曲线

    Figure 6.  Output powers of the frequency-doubled green laser under different BRF thicknesses of 1, 2, and 4 mm.

    图 7  (a) 基频激光与倍频绿光功率对比曲线; (b) 吸收泵浦光到倍频绿光转换效率曲线

    Figure 7.  (a) Comparison of the output powers of the fundamental laser and the frequency-doubled green laser; (b) the optical-to-optical efficiency from absorbed pump laser to green laser.

    图 8  自由运转及插入不同厚度BRF时VECSEL的光谱线宽

    Figure 8.  Spectral linewidths of the VECSEL under free operation and inserting BRF with different thicknesses.

    表 1  可调谐绿光VECSEL的主要结果

    Table 1.  Reported experimental results of tunable green VECSEL.

    年份 研究单位 中心波长/nm 调谐范围/nm 输出功率/W 转换效率/% 文献
    2008年 University of Strathclyde 530 10 1 11 [17]
    2012年 Macquarie University 560 17.5 0.8 4.2 [18]
    2012年 Ulm University 520 22 4.1 22 [19]
    2014年 University of Arizona 532 5 2 5 [20]
    2019年 重庆师范大学 559 4 65 mW 3.3 [21]
    2024年 本工作 509 20.1 8.23 16.6
    DownLoad: CSV
  • [1]

    徐庆扬, 陈少武 2004 物理 33 508Google Scholar

    Xu Q Y, Chen S W 2004 Physics 33 508Google Scholar

    [2]

    周远航, 张健, 冯爱新, 尚大智, 陈云, 唐杰, 杨海华 2021 中国激光 48 0602116Google Scholar

    Zhou Y H, Zhang J, Feng A X, Shang D Z, Chen Y, Tang J, Yang H H 2021 Chin. J. Lasers 48 0602116Google Scholar

    [3]

    金熙, 张磊, 周颖, 王磊, 曹芬芬 2019 中国激光医学杂志 28 308Google Scholar

    Jin X, Zhang L, Zhou Y, Wang L, Chao F F 2019 Chin. J. Laser Med. Surg. 28 308Google Scholar

    [4]

    聂伟, 阚瑞峰, 杨晨光, 陈兵, 许振宇, 刘文清 2018 中国激光 45 0911001Google Scholar

    Nie W, Kan R F, Yang C G, Chen B, Xu Z Y, Liu W Q 2018 Chin. J. Lasers 45 0911001Google Scholar

    [5]

    林宏, 王新民, 卢金军, 李卫中 2010 激光与光电子学进展 47 120101Google Scholar

    Lin H, Wang X M, Lu J J, Li W Z 2010 Laser Optoelectron. P. 47 120101Google Scholar

    [6]

    Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar

    [7]

    Guina M, Rantamäki A, Härkönen A 2017 J. Phy. D Appl. Phys. 50 383001Google Scholar

    [8]

    Mangold M, Wittwer V J, Sieber O D 2012 Opt. Express 20 4136Google Scholar

    [9]

    Chang-Hasnain C J. 2000 IEEE J. Sel. Top. Quant. 6 978Google Scholar

    [10]

    李慧娟, 张淼, 李凤琴 2016 中国激光 43 0302003Google Scholar

    Li H J, Zhang M, Li F Q 2016 Chin. J. Lasers 43 0302003Google Scholar

    [11]

    Wu Y, Shen Y, Addamane S, Reno J L, Williams B S 2021 Opt. Express 29 34695Google Scholar

    [12]

    Borgentun C, Bengtsson J, Larsson A, Demaria F, Hein A, Unger P 2010 Semiconductor Lasers and Laser Dynamics IV. SPIE Brussels Belgium April 3, 2010 p7720247

    [13]

    Borgentun C, Hessenius C, Bengtsson J, Fallahi M, Larsson A 2011 IEEE Photonics J. 3 946Google Scholar

    [14]

    Nakdali D A, Gaafar M, Shakfa M K, Zhang F, Vaupel M, Fedorova K A, Koch M 2015 IEEE Photonic. Tech. L. 27 1128Google Scholar

    [15]

    Broda A, Wójcik-Jedlińska A, Sankowska I, Wasiak M, Wieckowska M, Muszalski J 2017 IEEE Photonic. Tech. L. 29 2215Google Scholar

    [16]

    Qiu X L, Wang C, Li J, Li C C, Xie X Y, Wang Y L, Wei X 2022 IEEE Photonics J. 14 1545707Google Scholar

    [17]

    Maclean A J, Kemp A J, Calvez S, Kim J Y, Kim T, Dawson M D, Burns D 2008 IEEE J. Quantum Elect. 44 216Google Scholar

    [18]

    Lin J P, Helen M P, David J S, Craig J H, Malcolm-Graeme P A 2012 Opt. Express 20 5219Google Scholar

    [19]

    Hein A, Menzel S, Unger P 2012 Appl. Phys. Lett. 101 111109Google Scholar

    [20]

    Lukowski M, Hessenius C, Fallahi M 2014 IEEE J. Sel. Top. Quant. 21 432Google Scholar

    [21]

    邱小浪, 陈雪花, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 中国激光 46 0401002Google Scholar

    Qiu X L, Chen X H, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Chin. J. Lasers 46 0401002Google Scholar

    [22]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

    [23]

    Smith A V 2018 Crystal Nonlinear Optics: With SNLO Examples (Albuquerque: AS-Photonics

    [24]

    Smith A V 2003 Proc. SPIE 4972 50Google Scholar

Metrics
  • Abstract views:  2717
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2024
  • Accepted Date:  26 April 2024
  • Available Online:  09 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回