-
Transmitting optical information through scattering medium has broad application prospects in biomedical, aerospace and other fields. However, the light passing through the scattering medium will cause wavefront distortion and optical information blurring. Wavefront shaping technology uses a mathematical matrix to characterize the characteristics of scattering medium, which can achieve refocusing and imaging after light propagation through the scattering medium. It mainly includes optical phase conjugation, optical transmission matrix and wavefront shaping based on iterative optimization. However, the iterative wavefront shaping is considered to be a cost-effective method. Based on the wavefront amplitude modulation technology, the wavefront amplitude of the incident light is continuously adjusted by using the optimization algorithm to find the corresponding wavefront amplitude distribution that can maximize the light intensity in the target area. The system generates binary patterns implemented with digital-micromirror device (DMD) based on on-off state of micromirror, where “on” represents 1 and “off” refers to 0. The DMD has a high refresh rate and can achieve high speed wavefront amplitude modulation by using the iteration algorithm. In the experiment, the scattering medium is prepared with TiO2, water and gelatin, whose persistence times are controlled with the water-gelatin ratio (WGR). In addition, the Pearson correlation coefficient (Cor) curve obtained through 300-s-measurement under different WGR conditions, which shows that the greater WGR, the shorter the persistence time is. The experiment mainly studies the focusing of the spatial light through scattering media by wavefront amplitude modulation, and discusses the ability of point guard algorithm (PGA) and genetic algorithm (GA) to control the scattered light field with different persistence times in 64 × 64 segments. The experimental results show that the PGA can achieve higher enhancement factor and more uniform multi-point focusing than the GA after 1000 iterations in the scattering medium with the same persistence time. The relative standard deviation value is inversely proportional to the WGR value when multi-point focusing can be completed. We also demonstrate that GA can only achieve single-point focusing when WGR = 40, and it cannot accomplish multi-point focusing in self-made scattering medium. This study not only verifies a method to achieve focusing scattering light field, but also provides a new scheme for testing the performance of the iterative wavefront shaping.
-
Keywords:
- scattering medium /
- wavefront shaping /
- focusing /
- amplitude modulation
[1] Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photonics 2 110Google Scholar
[2] Lai X T, Li Q Y, Chen Z Y, Shao X P, Pu J X 2021 Opt. Express 29 43280Google Scholar
[3] 赵富, 胡渝曜, 王鹏, 刘军 2023 物理学报 72 154201Google Scholar
Zhao F, Hu Y Y, Wang P, Liu J 2023 Acta Phys. Sin. 72 154201Google Scholar
[4] Yang J M, He Q Z, Liu L X, Qu Y, Shao R J, Song B W, Zhao Y Y 2021 Light Sci. Appl. 10 149Google Scholar
[5] Zhao Y Y, He Q Z, Li S N, Yang J M 2021 Opt. Lett. 46 1518Google Scholar
[6] Duan M G, Yang Z G, Zhao Y, Fang L J, Zuo H Y, Li Z S, Wang D Q 2022 Opt. Laser. Technol. 156 108529Google Scholar
[7] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar
Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar
[8] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 物理学报 70 224203Google Scholar
Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar
[9] 李元铖, 翟爱平, 张腾, 赵文静, 王东 2022 光学学报 42 1411002Google Scholar
Li Y C, Zhai A P, Zhang T, Zhao W J, Wang D 2022 Acta Opt. Sin. 42 1411002Google Scholar
[10] 李琼瑶, 扎西巴毛, 陈子阳, 蒲继熊 2020 光学学报 40 0111016Google Scholar
Li Q Y, Zhaxi B M, Chen Z Y, Pu J X 2020 Acta Opt. Sin. 40 0111016Google Scholar
[11] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖 2017 物理学报 66 114202Google Scholar
Zhang C, Fang L J, Zhu J H, Zuo H Y, Gao F H, Pang L 2017 Acta Phys. Sin. 66 114202Google Scholar
[12] 张熙程, 方龙杰, 庞霖 2018 物理学报 67 104202Google Scholar
Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202Google Scholar
[13] 罗嘉伟, 伍代轩, 梁家俊, 沈乐成 2024 激光与光电子学进展 61 1011008Google Scholar
Luo J W, Wu D X, Liang J J, Shen Y C 2024 Laser Optoelectron. Prog. 61 1011008Google Scholar
[14] Zhou S H, Xie H, Zhang C C, Hua Y Z, Zhang W H, Chen Q, Gu G H, Sui X B 2021 Optik 244 167516Google Scholar
[15] 朱磊, 邵晓鹏 2020 光学学报 40 0111005Google Scholar
Zhu L, Shao X P 2020 Acta Opt. Sin. 40 0111005Google Scholar
[16] Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar
[17] Vellekoop I M, Lagendijk A, Mosk A P 2010 Nat. Photonics 4 320Google Scholar
[18] Conkey D B, Brown A N 2012 Opt. Express 20 4840Google Scholar
[19] Woo C M, Zhao Q, Zhong T, Li H H, Yu Z P, Lai P X 2022 APL Photonics 7 046109Google Scholar
[20] Feng Q, Yang F, Xu X Y, Zhang B, Ding Y C, Liu Q 2019 Opt. Express 27 36459Google Scholar
[21] Conkey D B, Piestun R 2012 Opt. Express 20 27312Google Scholar
[22] Duan M G, Zhao Y, Yang Z G, Deng X, Huangfu H L, Zuo H Y, Li Z S, Wang D Q 2023 Opt. Comm. 548 129832Google Scholar
[23] Duan M G, Zhao Y, Huangfu H L, Deng X, Zuo H Y, Luo S R, Li Z S, Wang D Q 2023 Results Phys. 52 106767Google Scholar
[24] Vellekoop I M, Mosk A P 2008 Opt. Commun. 281 3071Google Scholar
[25] Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 1733Google Scholar
[26] Vellekoop I M, Aegerter C M 2010 Proc. SPIE 7554 755430Google Scholar
-
-
[1] Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photonics 2 110Google Scholar
[2] Lai X T, Li Q Y, Chen Z Y, Shao X P, Pu J X 2021 Opt. Express 29 43280Google Scholar
[3] 赵富, 胡渝曜, 王鹏, 刘军 2023 物理学报 72 154201Google Scholar
Zhao F, Hu Y Y, Wang P, Liu J 2023 Acta Phys. Sin. 72 154201Google Scholar
[4] Yang J M, He Q Z, Liu L X, Qu Y, Shao R J, Song B W, Zhao Y Y 2021 Light Sci. Appl. 10 149Google Scholar
[5] Zhao Y Y, He Q Z, Li S N, Yang J M 2021 Opt. Lett. 46 1518Google Scholar
[6] Duan M G, Yang Z G, Zhao Y, Fang L J, Zuo H Y, Li Z S, Wang D Q 2022 Opt. Laser. Technol. 156 108529Google Scholar
[7] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar
Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar
[8] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 物理学报 70 224203Google Scholar
Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar
[9] 李元铖, 翟爱平, 张腾, 赵文静, 王东 2022 光学学报 42 1411002Google Scholar
Li Y C, Zhai A P, Zhang T, Zhao W J, Wang D 2022 Acta Opt. Sin. 42 1411002Google Scholar
[10] 李琼瑶, 扎西巴毛, 陈子阳, 蒲继熊 2020 光学学报 40 0111016Google Scholar
Li Q Y, Zhaxi B M, Chen Z Y, Pu J X 2020 Acta Opt. Sin. 40 0111016Google Scholar
[11] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖 2017 物理学报 66 114202Google Scholar
Zhang C, Fang L J, Zhu J H, Zuo H Y, Gao F H, Pang L 2017 Acta Phys. Sin. 66 114202Google Scholar
[12] 张熙程, 方龙杰, 庞霖 2018 物理学报 67 104202Google Scholar
Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202Google Scholar
[13] 罗嘉伟, 伍代轩, 梁家俊, 沈乐成 2024 激光与光电子学进展 61 1011008Google Scholar
Luo J W, Wu D X, Liang J J, Shen Y C 2024 Laser Optoelectron. Prog. 61 1011008Google Scholar
[14] Zhou S H, Xie H, Zhang C C, Hua Y Z, Zhang W H, Chen Q, Gu G H, Sui X B 2021 Optik 244 167516Google Scholar
[15] 朱磊, 邵晓鹏 2020 光学学报 40 0111005Google Scholar
Zhu L, Shao X P 2020 Acta Opt. Sin. 40 0111005Google Scholar
[16] Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar
[17] Vellekoop I M, Lagendijk A, Mosk A P 2010 Nat. Photonics 4 320Google Scholar
[18] Conkey D B, Brown A N 2012 Opt. Express 20 4840Google Scholar
[19] Woo C M, Zhao Q, Zhong T, Li H H, Yu Z P, Lai P X 2022 APL Photonics 7 046109Google Scholar
[20] Feng Q, Yang F, Xu X Y, Zhang B, Ding Y C, Liu Q 2019 Opt. Express 27 36459Google Scholar
[21] Conkey D B, Piestun R 2012 Opt. Express 20 27312Google Scholar
[22] Duan M G, Zhao Y, Yang Z G, Deng X, Huangfu H L, Zuo H Y, Li Z S, Wang D Q 2023 Opt. Comm. 548 129832Google Scholar
[23] Duan M G, Zhao Y, Huangfu H L, Deng X, Zuo H Y, Luo S R, Li Z S, Wang D Q 2023 Results Phys. 52 106767Google Scholar
[24] Vellekoop I M, Mosk A P 2008 Opt. Commun. 281 3071Google Scholar
[25] Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 1733Google Scholar
[26] Vellekoop I M, Aegerter C M 2010 Proc. SPIE 7554 755430Google Scholar
Catalog
Metrics
- Abstract views: 1350
- PDF Downloads: 65
- Cited By: 0