-
In this paper, Nd3+-doped GdTaO4 laser crystal for scintillator with high density is successfully grown by the Czochralski method, and the absorption spectra are measured along the a, b and c directions in a wide wavelength range of 260-2000 nm. The experimental energy levels for Nd3+ are analyzed and identified. The free-ions and crystal-field parameters are fitted by the experimental energy levels with the root mean square deviation of 12.66 cm-1, and 102 Stark energy levels for Nd3+ in GdTaO4 host crystal are assigned. The fitting results of free-ions and crystal-field parameters are compared with those already reported for Nd3+:GdxLu1-xTaO4 (x=0.85) crystal. It indicates that the fitting results of Stark energy levels agree well with the experimental spectra.
-
Keywords:
- Nd3+:GdTaO4 crystal /
- absorption spectrum /
- crystal-field calculation /
- energy levels fitting
[1] Wber M J 2002 J. Lumin. 100 35
[2] Melcher C L, Schmand M, Eriksson M 2000 IEEE Trans. Nucl. Sci. 47 965
[3] Petrosyan A G, Shifinyan G O, Ovanesyan K L 1999 J. Cryst. Growth 198/199 492
[4] Lempicki A, Glodo J 1998 Nuc1. Instrum. Meth. A 416 333
[5] 5 Petrosyan A, Ovanesyan K, Shirinyan G, Butaeva T, Derdzyan M, Pedrini C, Dujardin C, Garnier N, Kamenskikh I 2005 Nucl. Instrum. Meth. A 537 168
[6] Forbes T Z, Nyman M, Rodriguez M A, Navrotsky A 2010 J. Solid State Chem. 183 2516
[7] Liu W P, Zhang Q L, Ding L H, Sun D L, Luo J Q, Yin S T 2009 J. Alloys Compd. 474 226
[8] Christiane G W, Koen B (Gschneidner K A, Eyring L Editors) 1996 Handbook on the Physics and Chemistry of Rare Earths (Amsterdam, New York, Oxford: North-holland Publishing Company) 23 143-152
[9] Karbowiak M, Edelstein N M, Drozdzynski J, Kossowski K 2002 Chem. Phys. 277 361
[10] Xia S D 1994 Group Theory and Spectroscopy (Beijing: Science Press) pp262-283
[11] Newman D J, Ng Betty 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) pp43-46
[12] Zhang Q L, Ning K J, Xiao J, Ding L H, Zhou W L, Liu W P, Yin S T, Jiang H H 2010 Chin. Phys. B 19 087501
[13] Antic-Fidancev E, Hölsß J, Lastusaari M 2003 J. Phys.: Condens. Matter. 15 863
[14] Gao J Y, Zhang Q L, Sun D L, Luo J Q, Liu W P, Yin S T 2012 Opt. Commun. 285 4420
[15] Gao J Y, Zhang Q L, Yang H J, Zhou P Y, Sun D L, Yin S T, He Y 2012 Chin. Phys. B 21 106103
-
[1] Wber M J 2002 J. Lumin. 100 35
[2] Melcher C L, Schmand M, Eriksson M 2000 IEEE Trans. Nucl. Sci. 47 965
[3] Petrosyan A G, Shifinyan G O, Ovanesyan K L 1999 J. Cryst. Growth 198/199 492
[4] Lempicki A, Glodo J 1998 Nuc1. Instrum. Meth. A 416 333
[5] 5 Petrosyan A, Ovanesyan K, Shirinyan G, Butaeva T, Derdzyan M, Pedrini C, Dujardin C, Garnier N, Kamenskikh I 2005 Nucl. Instrum. Meth. A 537 168
[6] Forbes T Z, Nyman M, Rodriguez M A, Navrotsky A 2010 J. Solid State Chem. 183 2516
[7] Liu W P, Zhang Q L, Ding L H, Sun D L, Luo J Q, Yin S T 2009 J. Alloys Compd. 474 226
[8] Christiane G W, Koen B (Gschneidner K A, Eyring L Editors) 1996 Handbook on the Physics and Chemistry of Rare Earths (Amsterdam, New York, Oxford: North-holland Publishing Company) 23 143-152
[9] Karbowiak M, Edelstein N M, Drozdzynski J, Kossowski K 2002 Chem. Phys. 277 361
[10] Xia S D 1994 Group Theory and Spectroscopy (Beijing: Science Press) pp262-283
[11] Newman D J, Ng Betty 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) pp43-46
[12] Zhang Q L, Ning K J, Xiao J, Ding L H, Zhou W L, Liu W P, Yin S T, Jiang H H 2010 Chin. Phys. B 19 087501
[13] Antic-Fidancev E, Hölsß J, Lastusaari M 2003 J. Phys.: Condens. Matter. 15 863
[14] Gao J Y, Zhang Q L, Sun D L, Luo J Q, Liu W P, Yin S T 2012 Opt. Commun. 285 4420
[15] Gao J Y, Zhang Q L, Yang H J, Zhou P Y, Sun D L, Yin S T, He Y 2012 Chin. Phys. B 21 106103
Catalog
Metrics
- Abstract views: 5998
- PDF Downloads: 231
- Cited By: 0