-
The implicit Monte Carlo (IMC) method is an important numerical approximation method of simulating the thermal radiative transfer problems under high temperature condition. However, one problem plaguing the IMC method is that the calculation error distributions of the radiation specific intensities are highly asymmetric in space and time. By theoretical analysis and numerical simulations, we find that the error is affected by the records of track in the tallying mesh. Accordingly, a global variance reduction method for implicit Monte Carlo simulation is developed and the corresponding formulas are derived. This method includes three key techniques: 1) the automated dynamic distribution method for the Monte Carlo simulation source particles; 2) the dynamic weight-window technique and the none-bias weight revise algorithm that is suited to the particle distribution method; 3) the analytical estimation variance reduction method of the radiation specific intensity. In view of the above, a three-dimensional simulation code, named IMC3D, is developed to simulate the thermal radiative transfer phenomena. The typical thermal radiative transport problem, known as Marshak wave, is simulated. The simulation results indicate that the global variance reduction method for implicit Monte Carlo makes the statistical errors much more symmetric in space and time and the maximum of error is controllable, thereby increasing the calculation speed approximately 10 times. The new IMC method and code are used for simulating the radiative transportation in hohlraum of ICF successfully.
-
Keywords:
- implicit Monte Carlo method /
- thermal radiative transfer /
- global variance reduction method /
- inertial confinement fusion
[1] 彭惠民 2008 等离子体中辐射输运和辐射流体力学 (北京: 国防工业出版社) 第39, 232页
Peng H M 2008 Radiation Transport and Radiation Hydrodynamics in Plasmas (Beijing: National Defense Industry Press) pp39, 232
[2] Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar
[3] 张均, 常铁强 2004 激光核聚变靶物理基础 (北京: 国防工业出版社) 第1—9页
Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) pp1–9 (in Chinese)
[4] 阿采尼, 迈尔·特尔·费恩 著 (沈百飞译) 2008 惯性聚变物理 (北京: 科学出版社) 第23, 254页
Stefano Atzeni, Jurgen Meyer-ter-Vehn (translated by Shen B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) pp23, 254 (in Chinese)
[5] 裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第1—20页
Pei L C, Zhang X Z 1980 Monte Carlo Method and Application in Particle Transportation (Beijing: Science Press) pp1–20 (in Chinese)
[6] Kalos M H, Whitlock P A 2022 Monte Carlo Methods (Weinheim: WILEY-VCH Verlag GmbH & Co KGaA) pp1–34
[7] Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313Google Scholar
[8] Densmore J D, Urbatsch T J, Evans T M, Buksas M W 2005 American Nuclear Society Topical Meeting in Mathematics and Computations Avignon, France, September 12–15, 2005 LA-UR-05-3781
[9] Densmore J D, Urbatsch T J, Evans T M, Buksas M W 2007 J. Comput. Phys. 222 485Google Scholar
[10] Cleveland M A, Gentile N, Palmer T S 2010 J. Comput. Phys. 229 5707Google Scholar
[11] Densmore J D, Thompson K G, Urbatsch T J 2012 J. Comput. Phys. 231 6924Google Scholar
[12] Cleveland M A, Wollaber A B 2018 J. Comput. Phys. 359 20Google Scholar
[13] Marinak M M, Remington B A, Weber S V, Tipton R E, Haan S W, Budil K S, Landen O L, Kilkenny J D, Wallace R 1995 Phys. Rev. Lett. 75 3677Google Scholar
[14] Rathkopf J A, Miller D S, Owen J M, et al. 2000 KULL: LLNL's ASCI Inertial Confinement Fusion Simulation Code (Livermore: Lawrence Livermore National Laboratory) UCRL-JC-137053
[15] 李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501Google Scholar
Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501Google Scholar
[16] 李树, 邓力, 田东风, 李刚 2014 物理学报 63 239501Google Scholar
Li S, Deng L, Tian D F, Li G 2014 Acta Phys. Sin. 63 239501Google Scholar
[17] 李树, 蓝可, 赖东显, 刘杰 2015 物理学报 64 145203Google Scholar
Li S, Lan K, Lai D X Liu J 2015 Acta Phys. Sin. 64 145203Google Scholar
[18] Li S, Lan K, Liu J 2015 Laser Part. Beams 33 731Google Scholar
[19] 李树, 陈耀华, 姬志成, 章明宇, 任国利, 霍文义, 闫威华, 韩小英, 李志超, 刘杰, 蓝可 2018 物理学报 67 025202Google Scholar
Li S, Chen Y H, Ji Z C, Zhang M Y, Ren G L, Huo W Y, Yan W H, Han X Y, Li Z C, Liu J, Lan K 2018 Acta Phys. Sin. 67 025202Google Scholar
[20] Marshak R E 1958 Phys. Fluids 1 24Google Scholar
[21] Pomraning G C 1979 J. Quant. Spectrosc. Radiat. Transfer 21 249Google Scholar
[22] Hurricane O A, Hammer J H 2006 Phys. Plasmas 13 113303Google Scholar
[23] Cooper M A 1999 Ph. D. Dissertation (Ann Arbor: University of Michigan)
[24] Lan K, Liu J, Lai D X, Zheng W D, He X T 2014 Phys. Plasmas 21 010704Google Scholar
[25] Huo W Y, Liu J, Zhao Y Q, Zheng W D, Lan K 2014 Phys. Plasmas 21 114503Google Scholar
[26] Lan K, Liu J, Li Z, et al. 2016 Matter and Radiation at Extremes 1 8Google Scholar
[27] Haan S W, Lindl J D, Callahan D A, et al. 2011 Phys. Plasmas 18 051001Google Scholar
[28] Cao H, Chen Y H, Zhai C L, Zheng C Y, Lan K 2017 Phys. Plasmas 24 082701Google Scholar
-
表 1 计算时间及计算效率比较
Table 1. Comparison of calculated CPU time and efficiency.
原方法 情况I 情况II 情况III 实际计算时间/min 606 852 863 971 时间比值(情况x/原方法) 1.0 1.4 1.4 1.6 7.4 ns时刻波头误差 0.06011 0.02799 0.02179 0.01445 等效计算时间/min 606 185 113 56 效率提升(情况x/原方法) 1.0 3.27 5.36 10.82 注: 等效时间折算方法. 根据“误差与源粒子数的1/2次方呈反比”、“源粒子数与计算时间呈正比”原则, 在误差相等条件下, 等效 时间 = 情况 x 实际计算时间×(情况 x 误差的2次方/原方法误差的2次方). -
[1] 彭惠民 2008 等离子体中辐射输运和辐射流体力学 (北京: 国防工业出版社) 第39, 232页
Peng H M 2008 Radiation Transport and Radiation Hydrodynamics in Plasmas (Beijing: National Defense Industry Press) pp39, 232
[2] Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar
[3] 张均, 常铁强 2004 激光核聚变靶物理基础 (北京: 国防工业出版社) 第1—9页
Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) pp1–9 (in Chinese)
[4] 阿采尼, 迈尔·特尔·费恩 著 (沈百飞译) 2008 惯性聚变物理 (北京: 科学出版社) 第23, 254页
Stefano Atzeni, Jurgen Meyer-ter-Vehn (translated by Shen B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) pp23, 254 (in Chinese)
[5] 裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第1—20页
Pei L C, Zhang X Z 1980 Monte Carlo Method and Application in Particle Transportation (Beijing: Science Press) pp1–20 (in Chinese)
[6] Kalos M H, Whitlock P A 2022 Monte Carlo Methods (Weinheim: WILEY-VCH Verlag GmbH & Co KGaA) pp1–34
[7] Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313Google Scholar
[8] Densmore J D, Urbatsch T J, Evans T M, Buksas M W 2005 American Nuclear Society Topical Meeting in Mathematics and Computations Avignon, France, September 12–15, 2005 LA-UR-05-3781
[9] Densmore J D, Urbatsch T J, Evans T M, Buksas M W 2007 J. Comput. Phys. 222 485Google Scholar
[10] Cleveland M A, Gentile N, Palmer T S 2010 J. Comput. Phys. 229 5707Google Scholar
[11] Densmore J D, Thompson K G, Urbatsch T J 2012 J. Comput. Phys. 231 6924Google Scholar
[12] Cleveland M A, Wollaber A B 2018 J. Comput. Phys. 359 20Google Scholar
[13] Marinak M M, Remington B A, Weber S V, Tipton R E, Haan S W, Budil K S, Landen O L, Kilkenny J D, Wallace R 1995 Phys. Rev. Lett. 75 3677Google Scholar
[14] Rathkopf J A, Miller D S, Owen J M, et al. 2000 KULL: LLNL's ASCI Inertial Confinement Fusion Simulation Code (Livermore: Lawrence Livermore National Laboratory) UCRL-JC-137053
[15] 李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501Google Scholar
Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501Google Scholar
[16] 李树, 邓力, 田东风, 李刚 2014 物理学报 63 239501Google Scholar
Li S, Deng L, Tian D F, Li G 2014 Acta Phys. Sin. 63 239501Google Scholar
[17] 李树, 蓝可, 赖东显, 刘杰 2015 物理学报 64 145203Google Scholar
Li S, Lan K, Lai D X Liu J 2015 Acta Phys. Sin. 64 145203Google Scholar
[18] Li S, Lan K, Liu J 2015 Laser Part. Beams 33 731Google Scholar
[19] 李树, 陈耀华, 姬志成, 章明宇, 任国利, 霍文义, 闫威华, 韩小英, 李志超, 刘杰, 蓝可 2018 物理学报 67 025202Google Scholar
Li S, Chen Y H, Ji Z C, Zhang M Y, Ren G L, Huo W Y, Yan W H, Han X Y, Li Z C, Liu J, Lan K 2018 Acta Phys. Sin. 67 025202Google Scholar
[20] Marshak R E 1958 Phys. Fluids 1 24Google Scholar
[21] Pomraning G C 1979 J. Quant. Spectrosc. Radiat. Transfer 21 249Google Scholar
[22] Hurricane O A, Hammer J H 2006 Phys. Plasmas 13 113303Google Scholar
[23] Cooper M A 1999 Ph. D. Dissertation (Ann Arbor: University of Michigan)
[24] Lan K, Liu J, Lai D X, Zheng W D, He X T 2014 Phys. Plasmas 21 010704Google Scholar
[25] Huo W Y, Liu J, Zhao Y Q, Zheng W D, Lan K 2014 Phys. Plasmas 21 114503Google Scholar
[26] Lan K, Liu J, Li Z, et al. 2016 Matter and Radiation at Extremes 1 8Google Scholar
[27] Haan S W, Lindl J D, Callahan D A, et al. 2011 Phys. Plasmas 18 051001Google Scholar
[28] Cao H, Chen Y H, Zhai C L, Zheng C Y, Lan K 2017 Phys. Plasmas 24 082701Google Scholar
Catalog
Metrics
- Abstract views: 3066
- PDF Downloads: 99
- Cited By: 0