Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modification of method of sampling radiation source particle in spherical geometry

Xu Yu-Pei Li Shu

Citation:

Modification of method of sampling radiation source particle in spherical geometry

Xu Yu-Pei, Li Shu
PDF
HTML
Get Citation
  • Sampling of radiation source particles is important for obtaining a correct result in the thermal radiative transfer simulation with implicit Monte Carlo. When conducting the implicit Monte Carlo simulation of spherical geometry, temperature in a cell (a spherical shell) is generally treated as a spatially independent value. That means that the particles of radiative source are uniformly distributed in a spherical shell. In some cases where the gradient of temperature inside a cell is relatively small, the treatment does not cause too many errors. However, when the opacity of material becomes large enough or the spherical shell becomes thick enough, the temperature of thermal wave head will change sharply and there will be a great temperature gradient even in a single spherical shell. The treatment will make the thermal radiation propagate much faster than the practical one, which is unacceptable in physics. We investigate the physical and numerical reasons for this violation, finding that the simulation results strongly rely on the separation of cell and that the thermal wave propagates faster with the cell number decreasing. In order to yield an accurate result, the cell number has to increase up to a large enough value. Unfortunately, more cells need more particles to reduce the numerical variance, and more particles will cost more computation time and thus causing the simulation efficiency to lower. In our work, temperature is not treated as a constant in space any more. Instead, it is treated as a linear function in a cell. Based on a new temperature function and radiative energy density distribution, a probability density distribution function of emitting position of radiation source particle in spherical geometry is obtained. Then two new spatial sampling methods are proposed and the sampling procedures of radiation source particle are designed. To verify our new sampling methods, we test several typical thermal radiative problems and compare the result with a reference solution. Numerical experiments show that both two new sampling methods can correct the errors of thermal radiative propagation speed and overcome the difficulty that simulation result is strongly dependent on cell number. In addition, both new sampling methods can obtain an accurate result even with less cells and less particles, which can saves plenty of computation time and improves the simulation efficiency.
      Corresponding author: Li Shu, li_shu@iapcm.ac.cn
    [1]

    彭惠民 2008 等离子体中辐射输运和辐射流体力学 (北京: 国防工业出版社) 第38页

    Peng H M 2008 Radiation Transport and Radiation Hydrodynamics in Plasmas (Beijing: National Defense Industry Press) p38 (in Chinese)

    [2]

    Hammersly J M, Handscomb D C 1964 Monte Carlo Method (New York: John Wiley & Sons Press) p76

    [3]

    裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第18页

    Pei L C, Zhang X Z 1980 Monte Carlo Method and Application in Particle Transportation (Beijing: Science Press) p18 (in Chinese)

    [4]

    Fleck J A 1963 Computational Method in the Physical Sciences (Vol. 1) (New York: McGraw-Hill) p43

    [5]

    Campbell P M, Nelson R G 1964 Livermore, Calif : Lawrence Radiation Laboratory Report UCRL-7838

    [6]

    Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313Google Scholar

    [7]

    Evans T M, Urbatsch T J 2002 MILAGRO : A Parallel Implicit Monte Carlo Code for 3-D Radiative Transfer (Los Alamos: Los Alamos National Laboratory) pNM 87545

    [8]

    Kasen D, Thomas R C, Nugent P 2006 Astrophys. J. 651 366Google Scholar

    [9]

    Kromer M, Sim S A 2009 Mon. Not. R. Astron. Soc. 398 1809Google Scholar

    [10]

    Wollaeger R T, van Rossum D R, Graziani C, Couch S M, Jordan G C, Lamb D Q, Moses G A 2013 Astrophys. J. Suppl. Ser. 209 20Google Scholar

    [11]

    Fleck J A, J R, Canfield E H 1984 J. Comput. Phys. 54 508Google Scholar

    [12]

    Giorla J, Sentis R 1987 J. Comput. Phys. 70 145Google Scholar

    [13]

    Gentile N A 2001 J. Comput. Phys. 172 543Google Scholar

    [14]

    Densmore J D, Urbatsch T J, Evans T M, Buksas M W 2007 J. Comput. Phys. 222 485Google Scholar

    [15]

    Densmore J D, Thompson K G, Urbatsch T J 2012 J. Comput. Phys. 231 6924Google Scholar

    [16]

    李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501Google Scholar

    Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501Google Scholar

    [17]

    Huo W Y, Li Z C, Yang D, Lan K, Liu J, Ren G L, Li S W, Yang Z W, Guo L, Hou L F, Xie X F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Du K, Zhao R C, Li P, Wang W, Su J Q, Ding Y K, He X T, Zhang W Y 2016 Matter Radiat. Extremes 1 2Google Scholar

    [18]

    李树, 陈耀华, 姬志成, 章明宇, 任国利, 霍文义, 闫威华, 韩小英, 李志超, 刘杰, 蓝可 2018 物理学报 67 025202Google Scholar

    Li S, Chen Y H, Ji Z C, Zhang M Y, Ren G L, Huo W Y, Yan W H, Han X Y, Li Z C, Liu J, Lan K 2018 Acta Phys. Sin. 67 025202Google Scholar

    [19]

    Feng T G, Lai D X 1996 Sci. China: E 39 461Google Scholar

    [20]

    李树, 邓力, 田东风, 李刚 2014 物理学报 63 239501Google Scholar

    Li S, Deng L, Tian D F, Li G 2014 Acta Phys. Sin. 63 239501Google Scholar

    [21]

    Wollaber A B 2008 Ph.D. Dissertation (Ann Arbor: University of Michigan)

    [22]

    许淑艳 2006 蒙特卡罗方法在实验核物理中的应用 (北京: 原子能出版社) 第46页

    Xu S Y 2006 Applications of Monte Carlo Method in Experimental Nuclear Physics (Beijing: Atomic Energy Press) p46 (in Chinese)

  • 图 1  不同网格数的物质温度空间分布(t = 10 ns)

    Figure 1.  Material temperature with different cell numbers (t = 10 ns).

    图 2  物质温度的收敛情况 (a)不同网格数情况下r = 0.05 cm处的物质温度随时间的变化; (b) r = 0.05 cm处物质温度随网格数的变化(t = 5 ns)

    Figure 2.  The convergence of material temperature: (a) Material temperature change with time in r = 0.05 cm; (b) material temperature change with cell number in r = 0.05 cm (t = 5 ns).

    图 3  网格内温度与空间的关系可近似为线性关系

    Figure 3.  The dependence of temperature on space is approxi-mately linear.

    图 4  辐射波不同位置的辐射源粒子空间分布概率密度 (a)网格9, 波后处; (b)网格18, 波后处; (c)网格22, 波头处; (d)网格26, 波头处

    Figure 4.  Spatial probability density distribution of radiation source particle in different positions of radiation wave: (a) Cell 9, in the behind of wave; (b) cell 18, in the behind of wave; (c) cell 22, in the head of wave; (d) cell 26, in the head of wave.

    图 5  不同网格数时的物质温度空间分布 (t = 10 ns) (a)乘抽样法; (b)阶梯近似抽样法

    Figure 5.  Material temperature with different cell numbers (t = 10 ns): (a) Multiplying sampling method; (b) stepped approximation sampling method.

    图 6  网格数为40时两种新抽样法计算得到的物质温度空间分布(t = 10 ns)

    Figure 6.  Results of two new sampling methods with 40 cells (t = 10 ns).

    表 1  不同网格数时的温度曲线相对参考解的标准偏差和最大误差

    Table 1.  Relative to the reference solution, the standard deviation and the maximum error of temperature curves with different cell numbers.

    Cell numberStandard deviation/eVMaximum error/eV
    2080.8273
    4048.7254
    10028.9245
    20013.0125
    DownLoad: CSV

    表 2  不同网格数的计算时间

    Table 2.  Computation time with different cell numbers.

    Cell numberParticle numberComputation time/s
    201 × 1041.80 × 103
    402 × 1042.72 × 103
    1005 × 1045.74 × 103
    2002 × 1052.28 × 104
    4004 × 1055.06 × 104
    DownLoad: CSV

    表 3  不同网格数时的温度曲线相对基准解的标准偏差和最大误差

    Table 3.  Relative to the reference solution, the standard deviation, and the maximum error of temperature curves with difference cell numbers.

    Cell number乘抽样法阶梯近似抽样法
    Standard deviation/eVMaximum error/eVStandard deviation/eVMaximum error/eV
    2021.6091.618.8077.8
    4013.6075.412.4068.7
    10010.4077.910.4087.6
    2005.6463.35.2759.5
    DownLoad: CSV

    表 4  计算问题所花时间

    Table 4.  Computation time of the problem.

    Sampling methodCell numberParticle number/104Computation time/103 s
    等温法抽样2011.80
    4022.72
    10055.74
    2002022.80
    4004050.60
    乘抽样法2011.65
    4022.56
    10055.64
    2002022.40
    阶梯近似抽样法2011.61
    4022.58
    10055.75
    2002022.40
    DownLoad: CSV
  • [1]

    彭惠民 2008 等离子体中辐射输运和辐射流体力学 (北京: 国防工业出版社) 第38页

    Peng H M 2008 Radiation Transport and Radiation Hydrodynamics in Plasmas (Beijing: National Defense Industry Press) p38 (in Chinese)

    [2]

    Hammersly J M, Handscomb D C 1964 Monte Carlo Method (New York: John Wiley & Sons Press) p76

    [3]

    裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第18页

    Pei L C, Zhang X Z 1980 Monte Carlo Method and Application in Particle Transportation (Beijing: Science Press) p18 (in Chinese)

    [4]

    Fleck J A 1963 Computational Method in the Physical Sciences (Vol. 1) (New York: McGraw-Hill) p43

    [5]

    Campbell P M, Nelson R G 1964 Livermore, Calif : Lawrence Radiation Laboratory Report UCRL-7838

    [6]

    Fleck J A, Cummings J D 1971 J. Comput. Phys. 8 313Google Scholar

    [7]

    Evans T M, Urbatsch T J 2002 MILAGRO : A Parallel Implicit Monte Carlo Code for 3-D Radiative Transfer (Los Alamos: Los Alamos National Laboratory) pNM 87545

    [8]

    Kasen D, Thomas R C, Nugent P 2006 Astrophys. J. 651 366Google Scholar

    [9]

    Kromer M, Sim S A 2009 Mon. Not. R. Astron. Soc. 398 1809Google Scholar

    [10]

    Wollaeger R T, van Rossum D R, Graziani C, Couch S M, Jordan G C, Lamb D Q, Moses G A 2013 Astrophys. J. Suppl. Ser. 209 20Google Scholar

    [11]

    Fleck J A, J R, Canfield E H 1984 J. Comput. Phys. 54 508Google Scholar

    [12]

    Giorla J, Sentis R 1987 J. Comput. Phys. 70 145Google Scholar

    [13]

    Gentile N A 2001 J. Comput. Phys. 172 543Google Scholar

    [14]

    Densmore J D, Urbatsch T J, Evans T M, Buksas M W 2007 J. Comput. Phys. 222 485Google Scholar

    [15]

    Densmore J D, Thompson K G, Urbatsch T J 2012 J. Comput. Phys. 231 6924Google Scholar

    [16]

    李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501Google Scholar

    Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501Google Scholar

    [17]

    Huo W Y, Li Z C, Yang D, Lan K, Liu J, Ren G L, Li S W, Yang Z W, Guo L, Hou L F, Xie X F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Du K, Zhao R C, Li P, Wang W, Su J Q, Ding Y K, He X T, Zhang W Y 2016 Matter Radiat. Extremes 1 2Google Scholar

    [18]

    李树, 陈耀华, 姬志成, 章明宇, 任国利, 霍文义, 闫威华, 韩小英, 李志超, 刘杰, 蓝可 2018 物理学报 67 025202Google Scholar

    Li S, Chen Y H, Ji Z C, Zhang M Y, Ren G L, Huo W Y, Yan W H, Han X Y, Li Z C, Liu J, Lan K 2018 Acta Phys. Sin. 67 025202Google Scholar

    [19]

    Feng T G, Lai D X 1996 Sci. China: E 39 461Google Scholar

    [20]

    李树, 邓力, 田东风, 李刚 2014 物理学报 63 239501Google Scholar

    Li S, Deng L, Tian D F, Li G 2014 Acta Phys. Sin. 63 239501Google Scholar

    [21]

    Wollaber A B 2008 Ph.D. Dissertation (Ann Arbor: University of Michigan)

    [22]

    许淑艳 2006 蒙特卡罗方法在实验核物理中的应用 (北京: 原子能出版社) 第46页

    Xu S Y 2006 Applications of Monte Carlo Method in Experimental Nuclear Physics (Beijing: Atomic Energy Press) p46 (in Chinese)

  • [1] Li Shu, Wang Yang, Ji Zhi-Cheng, Lan Ke. Global variance reduction method for Monte Carlo simulation of thermal radiation transport. Acta Physica Sinica, 2023, 72(13): 139501. doi: 10.7498/aps.72.20230218
    [2] Shangguan Dan-Hua, Yan Wei-Hua, Wei Jun-Xia, Gao Zhi-Ming, Chen Yi-Bing, Ji Zhi-Cheng. Efficient Monte Carlo algorithm of time-dependent particle transport problem in multi-physics coupling calculation. Acta Physica Sinica, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [3] Xu Yu-Pei, Li Shu. An efficient Monte Carlo simulation method for thermal radiation transport. Acta Physica Sinica, 2020, 69(2): 029501. doi: 10.7498/aps.69.20191315
    [4] Li Shu, Chen Yao-Hua, Ji Zhi-Cheng, Zhang Ming-Yu, Ren Guo-Li, Huo Wen-Yi, Yan Wei-Hua, Han Xiao-Ying, Li Zhi-Chao, Liu Jie, Lan Ke. Three-dimensional simulations and analyses of spherical hohlraum experiments on SGⅢ laser facility. Acta Physica Sinica, 2018, 67(2): 025202. doi: 10.7498/aps.67.20170521
    [5] Sun An-Bang, Li Han-Wei, Xu Peng, Zhang Guan-Jun. Monte Carlo simulations of electron transport coefficients in low temperature streamer discharge plasmas. Acta Physica Sinica, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [6] Li Shu, Lan Ke, Lai Dong-Xian, Liu Jie. Monte Carlo simulation of the radiation transport of spherical holhraum. Acta Physica Sinica, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [7] Huang Jian-Wei, Wang Nai-Yan. Efficiency calibration for a NaI scintillation detector based on Monte-Carlo process and preliminary measurements of bremsstrahlung. Acta Physica Sinica, 2014, 63(18): 180702. doi: 10.7498/aps.63.180702
    [8] Li Shu, Deng Li, Tian Dong-Feng, Li Gang. A new sampling method based on radiation energy density for location of radiative source particles. Acta Physica Sinica, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [9] Li Shu, Li Gang, Tian Dong-Feng, Deng Li. An implicit Monte Carlo method for thermal radiation transport. Acta Physica Sinica, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [10] Li Peng, Xu Zhou, Li Ming, Yang Xing-Fan. A Monte Carlo simulation of secondary electron transport in diamond. Acta Physica Sinica, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [11] Li Fei, Xiao Liu, Liu Pu-Kun, Yi Hong-Xia, Wan Xiao-Sheng. Simple theory of space-charge-limited current between concentric sphere. Acta Physica Sinica, 2011, 60(9): 097901. doi: 10.7498/aps.60.097901
    [12] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [13] Li Gang, Deng Li, Mo Ze-Yao, Li Shu. Adaptive source biasing sampling for time-dependent radiation transport problems. Acta Physica Sinica, 2011, 60(2): 022401. doi: 10.7498/aps.60.022401
    [14] Yang Bo. Hawking radiation of Dirac particles in a rectilinearly accelerating Kinnersley black hole. Acta Physica Sinica, 2008, 57(2): 1278-1284. doi: 10.7498/aps.57.1278
    [15] Long Shu-Ming, Ran Qi-Wu, Xiong Xiao-Jun. The space dent of sphere-symmetry harmonic oscillator in ground state. Acta Physica Sinica, 2005, 54(3): 1044-1047. doi: 10.7498/aps.54.1044
    [16] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [17] QIANG WEN-CHAO. GLOBAL DEFORMATION GEOMETRY OFA SELF-GRAVITATIONAL ROTATIONAL BALL. Acta Physica Sinica, 2001, 50(9): 1643-1647. doi: 10.7498/aps.50.1643
    [18] Yang Shu-Zheng, Zhao Zheng. . Acta Physica Sinica, 1995, 44(3): 498-504. doi: 10.7498/aps.44.498
    [19] ZHAO ZHENG. THE NONTHERMAL RADIATIONS NEAR THE HORIZONS IN A STATIONARY RIEMANN SPACE-TIME. Acta Physica Sinica, 1983, 32(9): 1233-1236. doi: 10.7498/aps.32.1233
    [20] ZHANG CAI-GEN, ZHANG YOU-WEN. EFFECT OF THE CIRCUMSTANCE RADIATION ON THE MEASUREMENT OF THE TARGET THERMAL RADIATION PROPERTIES. Acta Physica Sinica, 1981, 30(7): 953-961. doi: 10.7498/aps.30.953
Metrics
  • Abstract views:  6754
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2020
  • Accepted Date:  17 April 2020
  • Published Online:  05 June 2020

/

返回文章
返回