搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非定常辐射输运问题的蒙特卡罗自适应偏倚抽样

李刚 邓力 黄则尧 李树

引用本文:
Citation:

非定常辐射输运问题的蒙特卡罗自适应偏倚抽样

李刚, 邓力, 黄则尧, 李树

Adaptive source biasing sampling for time-dependent radiation transport problems

Li Gang, Deng Li, Mo Ze-Yao, Li Shu
PDF
导出引用
  • 用蒙特卡罗(MC)方法模拟高温、高压、多介质、大变形辐射输运问题时,由于网格体积悬殊,导致各网格通量的统计误差涨落很大,随着时间步的增加,误差积累甚至会导致计算结果失真.为此,发展了针对全局网格计算的源偏倚抽样技巧.用于源偏倚抽样的价值函数基于上个时间步各网格通量及误差,通过加权构造产生,它比传统MC通过解伴随方程获取价值的性价比要高得多.数值试验表明,全局源偏倚抽样通过自适应分配当前时间步各网格的粒子数,有效地降低了当前步重要网格通量误差.
    Monte Carlo method is used to simulate the radiation transport problems which have characteristics of high temperature, high pressure, multi-media and large deformation of the grid. Due to the nonuniform particle distribution and great difference in the sizes of the grid, it makes the statistical errors of the grid fluxes fluctuate wildly. The error accumulation after many time steps may even influence the truth of the calculated results. So the global source biasing technique is developed. The importance function used here for source biasing sampling is based on the grid fluxes and errors of the previous time step. This is much faster than the traditional methods for solving the adjoint equation. The numerical tests showed that the neutron flux errors in the important grids are obviously reduced by using global source biasing which adaptively assigns the number of particles in each grid.
    • 基金项目: 国家自然科学基金重点项目(批准号:61033009)和国家重点基础研究发展计划(批准号:2011CB309702)资助的课题.
    [1]

    Du S H, Zhang S F, Feng T G, Wang Y Z, Xing J R 1989 Computer Simulation of Transport Problems (in Chinese) (Changsha: Hunan Science and Technology Press) p589 [杜书华、 张树发、 冯庭桂、 王元璋 1989 输运问题的计算机模拟(长沙:湖南科技出版社)第589页]

    [2]

    LiuL Y, Gardner R P 1997 Nuclear Science and Engineering 125 188

    [3]
    [4]
    [5]

    Zhang J T, He B, He X T, Chang T Q, Xu J B, Andereev N E 2001 Acta Phys. Sin. 50 921(in Chinese)[张家泰、 何 斌、 贺贤土、 常铁强、 徐林宝、 安德列夫 N. E. 2001 物理学报 50 921]

    [6]
    [7]

    Lan K, He X T, Lai D X, Li S G 2006 Acta Phys. Sin. 55 3789 (in Chinese)[蓝 可、 贺贤土、 赖东显、 李双贵 2006 物理学报 55 3789]

    [8]
    [9]

    Yuan G W, Hang X D, Sheng Z Q, Yue J Y 2009 Chin. J. Comput. Phys. 26 475 (in Chinese) [袁光伟、 杭旭登、 盛志强、 岳晶岩 2009 计算物理 26 475]

    [10]

    Li S G, Hang X D, Li J H 2009 Chin. J. Comput. Phys. 26 247 (in Chinese)[李双贵、 杭旭登、 李敬宏 2009 计算物理 26 247]

    [11]
    [12]
    [13]

    Yuan G W, Hang X D 2003 China Academy of Engineering Physics Annual Report 1 418(in Chinese)[袁光伟、 杭旭登 2003 工程物理研究院科技年报 1 418]

    [14]

    Deng L, Yuan G X, Huang Z F, Xu H Y, Wang R H, Li S 2003 J. Numer. Meth. Comput. Appli. 24 111 (in Chinese) [邓 力、 袁国兴、 黄正丰、 许海燕、 王瑞宏、 李 树 2003 数值计算与计算机应用 24 111]

    [15]
    [16]
    [17]

    Deng L, Zhang W Y, Huang Z F 2005 Chin. J. Comput. Phys. 22 527

    [18]
    [19]

    Bell G I, Glasstone S (Translated by Qian L) 1979 Nuclear Reactor Theory (Beijing: Atomic Energy Press) p16 [贝尔G I, 格拉斯登S著 千里译 1979 核反应堆理论 (北京: 原子能出版社) 16]

    [20]

    Xie Z S, Deng L 2005 Numerical Methods of Neutron Transport Theory (Xian: Northwestern Polytechnical University Press) p380 (in Chinese) [谢仲生、 邓 力 2005 中子输运理论数值方法 (西安: 西北工业大学出版社) 第380页]

    [21]
    [22]
    [23]

    Emmett M B 1985 A Monte Carlo Radiation Transport Code with Array Geometry Capability MORSE-CGA ORNL-6174

  • [1]

    Du S H, Zhang S F, Feng T G, Wang Y Z, Xing J R 1989 Computer Simulation of Transport Problems (in Chinese) (Changsha: Hunan Science and Technology Press) p589 [杜书华、 张树发、 冯庭桂、 王元璋 1989 输运问题的计算机模拟(长沙:湖南科技出版社)第589页]

    [2]

    LiuL Y, Gardner R P 1997 Nuclear Science and Engineering 125 188

    [3]
    [4]
    [5]

    Zhang J T, He B, He X T, Chang T Q, Xu J B, Andereev N E 2001 Acta Phys. Sin. 50 921(in Chinese)[张家泰、 何 斌、 贺贤土、 常铁强、 徐林宝、 安德列夫 N. E. 2001 物理学报 50 921]

    [6]
    [7]

    Lan K, He X T, Lai D X, Li S G 2006 Acta Phys. Sin. 55 3789 (in Chinese)[蓝 可、 贺贤土、 赖东显、 李双贵 2006 物理学报 55 3789]

    [8]
    [9]

    Yuan G W, Hang X D, Sheng Z Q, Yue J Y 2009 Chin. J. Comput. Phys. 26 475 (in Chinese) [袁光伟、 杭旭登、 盛志强、 岳晶岩 2009 计算物理 26 475]

    [10]

    Li S G, Hang X D, Li J H 2009 Chin. J. Comput. Phys. 26 247 (in Chinese)[李双贵、 杭旭登、 李敬宏 2009 计算物理 26 247]

    [11]
    [12]
    [13]

    Yuan G W, Hang X D 2003 China Academy of Engineering Physics Annual Report 1 418(in Chinese)[袁光伟、 杭旭登 2003 工程物理研究院科技年报 1 418]

    [14]

    Deng L, Yuan G X, Huang Z F, Xu H Y, Wang R H, Li S 2003 J. Numer. Meth. Comput. Appli. 24 111 (in Chinese) [邓 力、 袁国兴、 黄正丰、 许海燕、 王瑞宏、 李 树 2003 数值计算与计算机应用 24 111]

    [15]
    [16]
    [17]

    Deng L, Zhang W Y, Huang Z F 2005 Chin. J. Comput. Phys. 22 527

    [18]
    [19]

    Bell G I, Glasstone S (Translated by Qian L) 1979 Nuclear Reactor Theory (Beijing: Atomic Energy Press) p16 [贝尔G I, 格拉斯登S著 千里译 1979 核反应堆理论 (北京: 原子能出版社) 16]

    [20]

    Xie Z S, Deng L 2005 Numerical Methods of Neutron Transport Theory (Xian: Northwestern Polytechnical University Press) p380 (in Chinese) [谢仲生、 邓 力 2005 中子输运理论数值方法 (西安: 西北工业大学出版社) 第380页]

    [21]
    [22]
    [23]

    Emmett M B 1985 A Monte Carlo Radiation Transport Code with Array Geometry Capability MORSE-CGA ORNL-6174

  • [1] 李源, 石爱红, 陈国玉, 顾秉栋. 基于蒙特卡罗方法的4H-SiC(0001)面聚并台阶形貌演化机理. 物理学报, 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [2] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [3] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子. 物理学报, 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [4] 孙贤明, 肖赛, 王海华, 万隆, 申晋. 高斯光束在双层云中传输的蒙特卡罗模拟. 物理学报, 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [5] 李树, 蓝可, 赖东显, 刘杰. 球形黑腔辐射输运问题的蒙特卡罗模拟. 物理学报, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [6] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法. 物理学报, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [7] 戴春娟, 刘希琴, 刘子利, 刘伯路. 铝基碳化硼材料中子屏蔽性能的蒙特卡罗模拟. 物理学报, 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [8] 宋天明, 杨家敏. 三维柱腔内辐射输运的一维模拟. 物理学报, 2013, 62(1): 015210. doi: 10.7498/aps.62.015210
    [9] 杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲. 基于负氢离子源的全三维PIC/MCC模拟算法研究. 物理学报, 2012, 61(4): 045204. doi: 10.7498/aps.61.045204
    [10] 孟广为, 李敬宏, 裴文兵, 李双贵, 张维岩. 温度梯度对平面金壁发射能流平衡性的影响. 物理学报, 2011, 60(2): 025210. doi: 10.7498/aps.60.025210
    [11] 鞠志萍, 曹午飞, 刘小伟. 蒙特卡罗模拟单阻止柱双散射体质子束流扩展方法. 物理学报, 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [12] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究. 物理学报, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [13] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值. 物理学报, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [14] 郑飞腾, 杨中海, 金晓林. 空心阴极类火花放电初始电离过程的PIC/MCC模拟. 物理学报, 2008, 57(2): 990-995. doi: 10.7498/aps.57.990
    [15] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [16] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [17] 陈法新, 郑 坚, 杨建伦. 中子厚针孔成像数值模拟研究. 物理学报, 2006, 55(11): 5947-5952. doi: 10.7498/aps.55.5947
    [18] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究. 物理学报, 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [19] 江少恩, 孙可煦, 郑志坚, 丁永坤, 杨家敏, 缪文勇, 崔延莉, 陈久森, 于燕宁. 神光Ⅱ装置x射线辐射在低密度CH泡沫中的超声速传播实验研究. 物理学报, 2004, 53(10): 3413-3418. doi: 10.7498/aps.53.3413
    [20] 江少恩, 郑志坚, 成金秀, 孙可煦. 管靶X射线辐射输运初步研究Ⅰ简化模型数值模拟与分析. 物理学报, 2000, 49(8): 1507-1512. doi: 10.7498/aps.49.1507
计量
  • 文章访问数:  6111
  • PDF下载量:  1077
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-01
  • 修回日期:  2010-05-19
  • 刊出日期:  2011-01-05

非定常辐射输运问题的蒙特卡罗自适应偏倚抽样

  • 1. (1)北京应用物理与计算数学研究所计算物理实验室,北京 100088; (2)北京应用物理与计算数学研究所计算物理实验室,北京 100088; 中国工程物理研究院北京研究生部,北京 100088
    基金项目: 国家自然科学基金重点项目(批准号:61033009)和国家重点基础研究发展计划(批准号:2011CB309702)资助的课题.

摘要: 用蒙特卡罗(MC)方法模拟高温、高压、多介质、大变形辐射输运问题时,由于网格体积悬殊,导致各网格通量的统计误差涨落很大,随着时间步的增加,误差积累甚至会导致计算结果失真.为此,发展了针对全局网格计算的源偏倚抽样技巧.用于源偏倚抽样的价值函数基于上个时间步各网格通量及误差,通过加权构造产生,它比传统MC通过解伴随方程获取价值的性价比要高得多.数值试验表明,全局源偏倚抽样通过自适应分配当前时间步各网格的粒子数,有效地降低了当前步重要网格通量误差.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回