-
Flexible III-V thin-film solar cells are usually used as space power supply in spacecrafts. In practical applications, suitable encapsulated materials can protect the cells from being affected by environmental factors such as moisture, oxidation and pollutants. Therefore, it is critical to explore suitable flexible encapsulation schemes and long-term stability of solar cell performance. In this paper, the prepared flexible GaInP/GaAs solar cells are welded by resistance welding, and then laminated with polymer encapsulation thin films and hot melt adhesives with high light transmission. After being encapsulated, the flexible two-junction solar cell achieves good electrical performance (Jsc = 13.105 mA·cm–2, Voc = 2.360 V), the photoelectric conversion efficiency can reach 24.81%, and the weight density is about 405 g/m2. The performance stability and environmental tolerance of the encapsulated flexible GaInP/GaAs solar cells under complex storage conditions are investigated. The results show that the encapsulated flexible solar cells still maintain good stability after 85 ℃/85% RH damp heat has been tested for more than 1000 h and 108 cycles of thermal cycling test between –60 ℃ and 75 ℃, respectively. It also proves that the encapsulated technology adopted in this experiment is feasible and has an excellent protective effect on the double-junction solar cells. However, there is a slight decrease in the open-circuit voltage in the long-term damp heat test (ΔVoc ≈ 0.023 V), which may reflect the change of the solar cell itself. By further extracting the changes of the ideal factors n1 and n2 representing the recombination mechanism and diffusion mechanism respectively from the dark I-V curves (Δn1 = 1.295, Δn2 = 0.087), it can be found that the slight drop of open-circuit voltage is closely related to the recombination enhancement (Δn1
$\gg $ Δn2). In the long-term high temperature and humidity environment, it is easy to introduce defects in the material of the solar cells, serving as the carrier recombination centers, thus accelerating the carrier recombination, reducing the parallel resistance, shortening the minority carrier lifetime, and increasing the reverse saturation current resulting in a slight drop in the open-circuit voltage. In addition, the electrical simulation results based on the diode-model indicate that the change in the performance of the solar cells after flexible encapsulation is due to the enhanced carrier recombination under damp heat test, which reduces the open-circuit voltage.-
Keywords:
- GaAs thin-film solar cells /
- multi-junction solar cells /
- flexible encapsulation /
- reliability
[1] Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, Hinken D, Rauer M, Hao X 2022 Prog. Photovoltaics Res. Appl. 30 687Google Scholar
[2] Takamoto T, Kodama T, Yamaguchi H, Agui T, Takahashi N, Washio H, Hisamatsu T, Kaneiwa M, Okamoto K, Imaizumi M, Kibe K 2006 Proceedings of the 4th World Conference on Photovoltaic Energy Conversion Waikoloa, HI, USA, May 7–12, 2006 p1769
[3] Imaizumi M, Nakamura T, Takamoto T, Ohshima T, Tajima M 2017 Prog. Photovoltaics Res. Appl. 25 161Google Scholar
[4] Imaizumi M, Takamoto T, Sugimoto H, Ohshima T, Kawakita S 2019 Proceedings of the IEEE 46th Photovoltaic Specialists Conference Chicago, IL, USA, June 16–21, 2019 p1495
[5] Park S, Bourgoin J C, Sim H, Baur C, Khorenko V, Cavani O, Bourcois J, Picard S, Boizot B 2018 Prog. Photovoltaics Res. Appl. 26 778Google Scholar
[6] Raya-Armenta J M, Bazmohammadi N, Vasquez J C, Guerrero J M 2021 Sol. Energy Mater. Sol. Cells 233 111379Google Scholar
[7] Kawakita S, Imaizumi M, Makita K, Nishinaga J, Sugaya T, Shibata H, Sato S I, Ohshima T 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, OR, USA, June 5–10, 2016 p2574
[8] Takamoto T, Washio H, Juso H 2014 Proceedings of the 40th IEEE Photovoltaic Specialists Conference Denver, CO, USA, June 8–13, 2014 p1
[9] Samberg J P, Zachary Carlin C, Bradshaw G K, Colter P C, Harmon J L, Allen J B, Hauser J R, Bedair S M 2013 Appl. Phys. Lett. 103 103503Google Scholar
[10] Long J, Wu D, Huang X, Ye S, Li X, Ji L, Sun Q, Song M, Xing Z, Lu S 2021 Prog. Photovoltaics Res. Appl. 29 181Google Scholar
[11] Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T 2007 Appl. Phys. Lett. 91 023502Google Scholar
[12] Schön J, Bissels G M M W, Mulder P, van Leest R H, Gruginskie N, Vlieg E, Chojniak D, Lackner D 2022 Prog. Photovoltaics Res. Appl. 30 1003Google Scholar
[13] Shoji Y, Makita K, Sugaya T 2020 Jpn. J. Appl. Phys. 59 052003Google Scholar
[14] Long J, Li X, Sun Q, Dai P, Zhang Y, Xuan J, Chen F, Song M, Honda S, Uchida S, Lu S 2021 Sol. RRL 5 2100066Google Scholar
[15] Xuan J, Long J, Sun Q, Zhang Y, Li X, Wang X, Chen Z, Wu X, Lu S 2022 Sol. RRL 6 2200371Google Scholar
[16] van Riesen S, Bett A W 2005 Prog. Photovoltaics Res. Appl. 13 369Google Scholar
[17] King R R, Fetzer C M, Colter P C, Edmondson K M, Law D C, Stavrides A P, Yoon H, Kinsey G S, Cotal H L, Ermer J H, Sherif R A, Emery K, Metzger W, Ahrenkiel R K, Karam N H 2003 Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11–18, 2003 p622
[18] Kurtz S R, Olson J M, Kibbler A 1990 Appl. Phys. Lett. 57 1922Google Scholar
[19] Steiner M A, France R M, Buencuerpo J, Geisz J F, Nielsen M P, Pusch A, Olavarria W J, Young M, Ekins-Daukes N J 2020 Adv. Energy. Mater. 11 2002874Google Scholar
[20] France R M, Geisz J F, Song T, Olavarria W, Young M, Kibbler A, Steiner M A 2022 Joule 6 1121Google Scholar
[21] Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T 2013 Proceedings of the 9th International Conference on Concentrator Photovoltaic Systems (CPV) Miyazaki, Japan, April 15–17, 2013 p22
[22] Kayes B M, Zhang L, Twist R, Ding I K, Higashi G S 2014 IEEE J. Photovoltaics 4 729Google Scholar
[23] 张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武 2013 物理学报 62 158802Google Scholar
Zhang Y, Shan Z F, Cai J J, Wu H Q, Li J C, Chen K X, Lin Z W, Wang X W 2013 Acta Phys. Sin. 62 158802Google Scholar
[24] 王笃祥, 李明阳, 毕京锋, 李森林, 刘冠洲, 宋明辉, 吴超瑜, 陈文浚 2017 发光学报 38 1217Google Scholar
Wang D X, Li M Y, Bi J F, Li S L, Liu G Z, Song M H, Wu C Y, Chen W J 2017 Chin. J. Lumin. 38 1217Google Scholar
[25] 铁剑锐, 李晓东, 孙希鹏 2018 电源技术 42 1174
Tie J R, Li X D, Sun X P 2018 Chin. J. Power Souces 42 1174
[26] Kim T S, Kim H J, Geum D M, Han J H, Kim I S, Hong N, Ryu G H, Kang J, Choi W J, Yu K J 2021 ACS Appl. Mater. Interfacse 13 13248Google Scholar
[27] Raj V, Haggren T, Wong W W, Tan H H, Jagadish C 2021 J. Phys. D: Appl. Phys. 55 143002Google Scholar
[28] Yang J K, Jiao X Y, Yang Y, Wang X S, Song L L, Xue J, Chen Z C 2019 Proceedings of the Proceedings of the 6th China High Resolution Earth Observation Conference (CHREOC 2019) Chengdu, China, September 1, 2020 p385
[29] Drees M, Stender C L, Chan R, Osowski M, Pan N 2020 Proceedings of the 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC) Virtual Meeting, June 15–August 21, 2020 p1283
[30] Hong H F, Huang T S, Uen W Y, Chen Y Y 2014 J. Nanomater. 2014 1Google Scholar
[31] Mekhilef S, Saidur R, Kamalisarvestani M 2012 Renewable Sustainable Energy Rev. 16 2920Google Scholar
[32] Faye I, Ndiaye A, Gecke R, Blieske U, Kobor D, Camara M 2019 Sol. Energy 191 161Google Scholar
[33] Khan F, Kim J H 2019 Materials (Basel) 12 4047Google Scholar
[34] Orlando V, Gabás M, Galiana B, Espinet-González P, Palanco S, Nuñez N, Vázquez M, Araki K, Algora C 2017 Prog. Photovoltaics Res. Appl. 25 97Google Scholar
[35] Orlando V, Lombardero I, Gabás M, Nuñez N, Vázquez M, Espinet-González P, Bautista J, Romero R, Algora C 2019 Prog. Photovoltaics Res. Appl. 28 148Google Scholar
[36] Nuñez N, Vazquez M, Barrutia L, Bautista J, Lombardero I, Zamorano J C, Hinojosa M, Gabas M, Algora C 2021 Sol. Energy Mater. Sol. Cells 230 111211Google Scholar
[37] Espinet-González P, Algora C, Núñez N, Orlando V, Vázquez M, Bautista J, Araki K 2015 Prog. Photovoltaics Res. Appl. 23 559Google Scholar
[38] Bauhuis G J, Mulder P, Schermer J J 2014 Prog. Photovoltaics Res. Appl. 22 656Google Scholar
[39] Wanlass M, Ahrenkiel P, Albin D, Carapella J, Duda A, Emery K, Friedman D, Geisz J, Jones K, Kibbler A, Kiehl J, Kurtz S, McMahon W, Moriarty T, Olson J, Ptak A, Romero M, Ward S 2006 Proceedings of the 4th World Conference on Photovoltaic Energy Conversion Waikoloa, HI, USA, May 7–12, 2006 p729
[40] Sun Q, Long J, Li X, Dai P, Zhang Y, Xuan J, Wang X, Chen Z, Wu X, Lu S 2022 IEEE Electron Device Lett. 43 584Google Scholar
[41] Long J, Xiao M, Huang X, Xing Z, Li X, Dai P, Tan M, Wu Y, Song M, Lu S 2019 J. Cryst. Growth 513 38Google Scholar
[42] Chen Z, Long J, Sun Q, Wang X, Wu X, Li X, Yu M, Luo X, Zhao H, Fu Y, Lu S 2022 Adv. Energy Sustainability Res. 4 2200136Google Scholar
[43] 郭永刚, 李媛媛, 左燕, 卢博, 杨增英 2022 合成材料老化与应用 51 51Google Scholar
Guo Y G, Li Y Y, Zuo Y, Lu B, Yang Z Y 2022 Synth. Mater. Aging Appl. 51 51Google Scholar
[44] 丁盛, 张海鹏 2021 粘接 45 32
Ding S, Zhang H P 2021 Adhesion 45 32
[45] Huang X, Long J, Wu D, et al. 2020 Sol. Energy Mater. Sol. Cells 208 110398Google Scholar
[46] Hussein R, Borchert D, Grabosch G, Fahrner W R 2001 Sol. Energy Mater. Sol. Cells 69 123Google Scholar
[47] 岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 兰慕杰 2014 物理学报 63 188101Google Scholar
Yue L, Wu Y Y, Zhang Y Q, Hu J M, Sun C Y, Hao M M, Lan M J 2014 Acta Phys. Sin. 63 188101Google Scholar
[48] Braun A, Szabó N, Schwarzburg K, Hannappel T, Katz E A, Gordon J M 2011 Appl. Phys. Lett. 98 223506Google Scholar
[49] van Dyk E E, Meyer E L 2004 Renewable Energy 29 333Google Scholar
[50] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 物理学报 64 108802Google Scholar
Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar
[51] 肖文波, 刘伟庆, 吴华明, 张华明 2018 物理学报 67 198801Google Scholar
Xiao W B, Liu W Q, Wu H M, Zhang H M 2018 Acta Phys. Sin. 67 198801Google Scholar
-
图 5 柔性封装GaInP/GaAs薄膜太阳电池 (a) 85 ℃/85% RH湿热试验; (b) –60 ℃—75 ℃冷热循环试验后在AM 1.5G光谱下的J-V特性曲线, 图中插入的表格为相应的电学性能测试结果; (c), (d) 在长期湿热和冷热循环试验下的短路电流密度(Jsc)、开路电压(Voc)、填充因子(FF)和效率(Eff)电学性能参数随老化时间的归一化变化
Figure 5. J-V characteristic curves under the AM 1.5G spectra of encapsulated flexible GaInP/GaAs solar cells after: (a) Damp heat test at 85 ℃ and 85% RH; (b) thermal cycling test between –60 ℃ to 75 ℃, the inserted tables are the absolute values of performance parameters; (c), (d) normalized electrical properties of Jsc, Voc, FF, and Eff under long-term damp heat test (c) and thermal cycling test (d).
表 1 仿真参数初始设置值
Table 1. Initial setting values of the simulation parameters.
Parameter Iph/
mAI01/
(10–17 A)I02/
(10–25 A)n1 n2 Rsh/
(105 Ω)GaInP 13.96 2.09 4.3 2 1 1 GaAs 13.00 345 1.2×105 2 1 1 -
[1] Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, Hinken D, Rauer M, Hao X 2022 Prog. Photovoltaics Res. Appl. 30 687Google Scholar
[2] Takamoto T, Kodama T, Yamaguchi H, Agui T, Takahashi N, Washio H, Hisamatsu T, Kaneiwa M, Okamoto K, Imaizumi M, Kibe K 2006 Proceedings of the 4th World Conference on Photovoltaic Energy Conversion Waikoloa, HI, USA, May 7–12, 2006 p1769
[3] Imaizumi M, Nakamura T, Takamoto T, Ohshima T, Tajima M 2017 Prog. Photovoltaics Res. Appl. 25 161Google Scholar
[4] Imaizumi M, Takamoto T, Sugimoto H, Ohshima T, Kawakita S 2019 Proceedings of the IEEE 46th Photovoltaic Specialists Conference Chicago, IL, USA, June 16–21, 2019 p1495
[5] Park S, Bourgoin J C, Sim H, Baur C, Khorenko V, Cavani O, Bourcois J, Picard S, Boizot B 2018 Prog. Photovoltaics Res. Appl. 26 778Google Scholar
[6] Raya-Armenta J M, Bazmohammadi N, Vasquez J C, Guerrero J M 2021 Sol. Energy Mater. Sol. Cells 233 111379Google Scholar
[7] Kawakita S, Imaizumi M, Makita K, Nishinaga J, Sugaya T, Shibata H, Sato S I, Ohshima T 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, OR, USA, June 5–10, 2016 p2574
[8] Takamoto T, Washio H, Juso H 2014 Proceedings of the 40th IEEE Photovoltaic Specialists Conference Denver, CO, USA, June 8–13, 2014 p1
[9] Samberg J P, Zachary Carlin C, Bradshaw G K, Colter P C, Harmon J L, Allen J B, Hauser J R, Bedair S M 2013 Appl. Phys. Lett. 103 103503Google Scholar
[10] Long J, Wu D, Huang X, Ye S, Li X, Ji L, Sun Q, Song M, Xing Z, Lu S 2021 Prog. Photovoltaics Res. Appl. 29 181Google Scholar
[11] Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T 2007 Appl. Phys. Lett. 91 023502Google Scholar
[12] Schön J, Bissels G M M W, Mulder P, van Leest R H, Gruginskie N, Vlieg E, Chojniak D, Lackner D 2022 Prog. Photovoltaics Res. Appl. 30 1003Google Scholar
[13] Shoji Y, Makita K, Sugaya T 2020 Jpn. J. Appl. Phys. 59 052003Google Scholar
[14] Long J, Li X, Sun Q, Dai P, Zhang Y, Xuan J, Chen F, Song M, Honda S, Uchida S, Lu S 2021 Sol. RRL 5 2100066Google Scholar
[15] Xuan J, Long J, Sun Q, Zhang Y, Li X, Wang X, Chen Z, Wu X, Lu S 2022 Sol. RRL 6 2200371Google Scholar
[16] van Riesen S, Bett A W 2005 Prog. Photovoltaics Res. Appl. 13 369Google Scholar
[17] King R R, Fetzer C M, Colter P C, Edmondson K M, Law D C, Stavrides A P, Yoon H, Kinsey G S, Cotal H L, Ermer J H, Sherif R A, Emery K, Metzger W, Ahrenkiel R K, Karam N H 2003 Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11–18, 2003 p622
[18] Kurtz S R, Olson J M, Kibbler A 1990 Appl. Phys. Lett. 57 1922Google Scholar
[19] Steiner M A, France R M, Buencuerpo J, Geisz J F, Nielsen M P, Pusch A, Olavarria W J, Young M, Ekins-Daukes N J 2020 Adv. Energy. Mater. 11 2002874Google Scholar
[20] France R M, Geisz J F, Song T, Olavarria W, Young M, Kibbler A, Steiner M A 2022 Joule 6 1121Google Scholar
[21] Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T 2013 Proceedings of the 9th International Conference on Concentrator Photovoltaic Systems (CPV) Miyazaki, Japan, April 15–17, 2013 p22
[22] Kayes B M, Zhang L, Twist R, Ding I K, Higashi G S 2014 IEEE J. Photovoltaics 4 729Google Scholar
[23] 张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武 2013 物理学报 62 158802Google Scholar
Zhang Y, Shan Z F, Cai J J, Wu H Q, Li J C, Chen K X, Lin Z W, Wang X W 2013 Acta Phys. Sin. 62 158802Google Scholar
[24] 王笃祥, 李明阳, 毕京锋, 李森林, 刘冠洲, 宋明辉, 吴超瑜, 陈文浚 2017 发光学报 38 1217Google Scholar
Wang D X, Li M Y, Bi J F, Li S L, Liu G Z, Song M H, Wu C Y, Chen W J 2017 Chin. J. Lumin. 38 1217Google Scholar
[25] 铁剑锐, 李晓东, 孙希鹏 2018 电源技术 42 1174
Tie J R, Li X D, Sun X P 2018 Chin. J. Power Souces 42 1174
[26] Kim T S, Kim H J, Geum D M, Han J H, Kim I S, Hong N, Ryu G H, Kang J, Choi W J, Yu K J 2021 ACS Appl. Mater. Interfacse 13 13248Google Scholar
[27] Raj V, Haggren T, Wong W W, Tan H H, Jagadish C 2021 J. Phys. D: Appl. Phys. 55 143002Google Scholar
[28] Yang J K, Jiao X Y, Yang Y, Wang X S, Song L L, Xue J, Chen Z C 2019 Proceedings of the Proceedings of the 6th China High Resolution Earth Observation Conference (CHREOC 2019) Chengdu, China, September 1, 2020 p385
[29] Drees M, Stender C L, Chan R, Osowski M, Pan N 2020 Proceedings of the 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC) Virtual Meeting, June 15–August 21, 2020 p1283
[30] Hong H F, Huang T S, Uen W Y, Chen Y Y 2014 J. Nanomater. 2014 1Google Scholar
[31] Mekhilef S, Saidur R, Kamalisarvestani M 2012 Renewable Sustainable Energy Rev. 16 2920Google Scholar
[32] Faye I, Ndiaye A, Gecke R, Blieske U, Kobor D, Camara M 2019 Sol. Energy 191 161Google Scholar
[33] Khan F, Kim J H 2019 Materials (Basel) 12 4047Google Scholar
[34] Orlando V, Gabás M, Galiana B, Espinet-González P, Palanco S, Nuñez N, Vázquez M, Araki K, Algora C 2017 Prog. Photovoltaics Res. Appl. 25 97Google Scholar
[35] Orlando V, Lombardero I, Gabás M, Nuñez N, Vázquez M, Espinet-González P, Bautista J, Romero R, Algora C 2019 Prog. Photovoltaics Res. Appl. 28 148Google Scholar
[36] Nuñez N, Vazquez M, Barrutia L, Bautista J, Lombardero I, Zamorano J C, Hinojosa M, Gabas M, Algora C 2021 Sol. Energy Mater. Sol. Cells 230 111211Google Scholar
[37] Espinet-González P, Algora C, Núñez N, Orlando V, Vázquez M, Bautista J, Araki K 2015 Prog. Photovoltaics Res. Appl. 23 559Google Scholar
[38] Bauhuis G J, Mulder P, Schermer J J 2014 Prog. Photovoltaics Res. Appl. 22 656Google Scholar
[39] Wanlass M, Ahrenkiel P, Albin D, Carapella J, Duda A, Emery K, Friedman D, Geisz J, Jones K, Kibbler A, Kiehl J, Kurtz S, McMahon W, Moriarty T, Olson J, Ptak A, Romero M, Ward S 2006 Proceedings of the 4th World Conference on Photovoltaic Energy Conversion Waikoloa, HI, USA, May 7–12, 2006 p729
[40] Sun Q, Long J, Li X, Dai P, Zhang Y, Xuan J, Wang X, Chen Z, Wu X, Lu S 2022 IEEE Electron Device Lett. 43 584Google Scholar
[41] Long J, Xiao M, Huang X, Xing Z, Li X, Dai P, Tan M, Wu Y, Song M, Lu S 2019 J. Cryst. Growth 513 38Google Scholar
[42] Chen Z, Long J, Sun Q, Wang X, Wu X, Li X, Yu M, Luo X, Zhao H, Fu Y, Lu S 2022 Adv. Energy Sustainability Res. 4 2200136Google Scholar
[43] 郭永刚, 李媛媛, 左燕, 卢博, 杨增英 2022 合成材料老化与应用 51 51Google Scholar
Guo Y G, Li Y Y, Zuo Y, Lu B, Yang Z Y 2022 Synth. Mater. Aging Appl. 51 51Google Scholar
[44] 丁盛, 张海鹏 2021 粘接 45 32
Ding S, Zhang H P 2021 Adhesion 45 32
[45] Huang X, Long J, Wu D, et al. 2020 Sol. Energy Mater. Sol. Cells 208 110398Google Scholar
[46] Hussein R, Borchert D, Grabosch G, Fahrner W R 2001 Sol. Energy Mater. Sol. Cells 69 123Google Scholar
[47] 岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 兰慕杰 2014 物理学报 63 188101Google Scholar
Yue L, Wu Y Y, Zhang Y Q, Hu J M, Sun C Y, Hao M M, Lan M J 2014 Acta Phys. Sin. 63 188101Google Scholar
[48] Braun A, Szabó N, Schwarzburg K, Hannappel T, Katz E A, Gordon J M 2011 Appl. Phys. Lett. 98 223506Google Scholar
[49] van Dyk E E, Meyer E L 2004 Renewable Energy 29 333Google Scholar
[50] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 物理学报 64 108802Google Scholar
Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar
[51] 肖文波, 刘伟庆, 吴华明, 张华明 2018 物理学报 67 198801Google Scholar
Xiao W B, Liu W Q, Wu H M, Zhang H M 2018 Acta Phys. Sin. 67 198801Google Scholar
Catalog
Metrics
- Abstract views: 4310
- PDF Downloads: 96
- Cited By: 0