Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Elastic properties and their pressure dependence of rare earth metals

HUANG Chengning LIU Beilei WANG Yuechao GAO Xingyu XIAN Jiawei LIU Haifeng SONG Haifeng

Citation:

Elastic properties and their pressure dependence of rare earth metals

HUANG Chengning, LIU Beilei, WANG Yuechao, GAO Xingyu, XIAN Jiawei, LIU Haifeng, SONG Haifeng
cstr: 32037.14.aps.74.20250574
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Rare earth metals are of significant importance in engineering and technological applications, and their unique f-electron-related behaviors have attracted widespread interest in condensed matter physics. In this work, we investigate the elastic properties of rare earth metals ranging from Ce to Yb by combining first-principles calculations with systematic data compilation. Taking Ce and Yb as representative cases, we investigate the evolution of their elastic properties under high-pressure conditions (0–15 GPa), and we systematically compare the simulation performances of different f-electron treatment approaches. The results indicate a significant difference in ductility between light and heavy rare earth metals under ambient pressure. Under pressure, the elastic properties of Ce and Yb undergo marked changes in phase transitions. Specifically, the B/G ratio, a key indicator of ductility, decreases from about 2.0 in light lanthanides to around 1.5 in heavy lanthanides, crossing the critical threshold of 1.75. Notably, during the fcc iso-structural phase transition in Ce and the fcc-bcc phase transition in Yb, a significant brittle-ductile transition is observed. These transitions are closely related to the bonding characteristics modulated by atomic number or pressure condition. For instance, as the atomic number increases, the Cauchy pressure (C12C44) decreases with the variation of s and d valence electrons, indicating an enhanced covalent bonding tendency. In addition, this study reveals that simulating f-electrons as core electrons can adequately describe the elastic properties and trends of rare earth metals under ambient pressure. However, when modeling high-pressure structural phase transitions and their related elastic evolution, the method of treating f-electrons as valence electrons and performing electron correlation correction shows better accuracy. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00150.
      Corresponding author: WANG Yuechao, yuechao_wang@126.com ; SONG Haifeng, song_haifeng@iapcm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3501503) and the National Natural Science Foundation of China (Grant No. U2230401).
    [1]

    McMahan A K, Huscroft C, Scalettar R T, Pollock E L 1998 J. Comput. Aid Mol. Des. 5 131Google Scholar

    [2]

    Grimvall G 1999 Thermophysical Properties of Materials (Amsterdam: Elsevier

    [3]

    Jia T T, Chen G, Zhang Y S 2017 Phys. Rev. B 95 155206Google Scholar

    [4]

    Li W G, Kou H B, Zhang X Y, Ma J Z, Li Y, Geng P J, Wu X Z, Chen L M, Fang D N 2019 Mech. Mater. 139 103194Google Scholar

    [5]

    Pugh S 1954 Philos. Mag. 45 823Google Scholar

    [6]

    Xu L, Li X, He Q, Yang J, Sun S L, Li J, Hu J B, Wu Q 2025 J. Appl. Phys. 137 015902Google Scholar

    [7]

    谢明宇, 李法新 2022 力学进展 52 33Google Scholar

    Xie M Y, Li F X 2022 Adv. Mech. 52 33Google Scholar

    [8]

    Kittel C 1996 Introduction to Solid State Physics (New York: Wiley

    [9]

    Boguslavskii Y Y, Goncharov V A, Il'ina G G 1989 J. Less-Common Met. 147 249Google Scholar

    [10]

    Jeong I K, Darling T W, Graf M J, Proffen T, Heffner R H, Lee Y, Vogt T, Jorgensen J D 2004 Phys. Rev. Lett. 92 105702Google Scholar

    [11]

    Decremps F, Antonangeli D, Amadon B, Schmerber G 2009 Phys. Rev. B 80 132103Google Scholar

    [12]

    Wang Z G, Bi Y, Xu L, Liu L 2014 Mater. Res. 1 026501Google Scholar

    [13]

    Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J, Mcmahan A K 2008 Phys. Rev. Lett. 101 165703Google Scholar

    [14]

    Lipp M J, Jenei Z, Cynn H, Kono Y, Park C, Kenney-Benson C, Evans W J 2017 Nat. Commun. 8 1198Google Scholar

    [15]

    Xu L, Wang Z G, Li Z G, Li X H, Yao S L, Li J, Zhou X M, Yu Y Y, Hu J B, Wu Q 2021 Appl. Phys. Lett. 118 074102Google Scholar

    [16]

    Söderlind P, Turchi P E A, Landa A, Lordi V 2014 J. Phys. : Condens. Matter. 26 416001Google Scholar

    [17]

    Hill R 1952 Proc. Phys. Soc. A 65 349Google Scholar

    [18]

    Yang Z, Xian J W, Gao X Y, Tian F Y, Song H F 2024 J. Chem. Phys. 161 194101Google Scholar

    [19]

    Blöchl P E 1994 Phys. Rev. B Condens Matter. 50 17953Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Delin A, Fast L, Johansson B, Eriksson O, Wills J M 1998 Phys. Rev. B 58 4345Google Scholar

    [22]

    Ouyang Y F, Tao X M, Zeng F J, Chen H M, Du Y, Feng Y P, He Y 2009 Physica B 404 2299Google Scholar

    [23]

    Seitz F, Turnbull D 1964 Solid State Physics: Advance in Research and Applications (New York: Academic press

    [24]

    Material Properties https://material-properties.org [2025-03-19]

    [25]

    Stassis C, Gould T, McMasters O D, Gschneidner K A, Nicklow R M 1979 Phys. Rev. B 19 5746Google Scholar

    [26]

    Pettifor D G 1992 Mater. Sci. Tech. 8 345Google Scholar

    [27]

    Eberhart M E, Jones T E 2012 Phys. Rev. B 86 134106Google Scholar

    [28]

    Kim S, Chen J, Cheng T, et al. PubChem 2025 update. 2025 Nucleic Acids Res. 53 D1516. https://pubchem.ncbi.nlm.nih.gov/periodic-table/melting-point/ [2025-03-19]

    [29]

    Nikolaev A V, Tsvyashchenko A V 2012 Phys. -Usp. 55 657Google Scholar

    [30]

    Voronov F F, Goncharova V A, Stal'gorova O V 1979 J. Exp. Theor. Phys. 49 687

    [31]

    Chen J L, Kaltsoyannis N 2022 J. Phys. Chem. C 126 11426Google Scholar

    [32]

    Eryigit S, Parlak C, Eryigit R 2022 J. Phys. : Condens. Matter 34 295402Google Scholar

    [33]

    Tran F, Karsai F, Blaha P 2014 Phys. Rev. B 89 155106Google Scholar

    [34]

    Chesnut G N, Vohra Y K 1999 Phys. Rev. Lett. 82 1712Google Scholar

    [35]

    Morée J B, Amadon B 2018 Phys. Rev. B 98 205101Google Scholar

    [36]

    Satikunvar D D, Bhatt N K, Thakore B Y 2021 J. Appl. Phys. 129 035107Google Scholar

  • 图 1  稀土金属Ce -Yb的模量(实验数据取自文献[23,24], 除本文计算外, 理论数据取自文献[16,21,22]) (a) 体模量; (b) 剪切模量

    Figure 1.  Elastic modulus of rare earth metals (Ce -Yb) (Experimental data are taken from Refs. [23,24], and theoretical data are taken from Refs. [16,21,22], except for the computational results from this work): (a) Bulk modulus; (b) shear modulus.

    图 2  (a) 稀土金属体模量和剪切模量的比值B/G, 并与已有的实验[23,24]进行比较; (b) f-core方法计算获得s, d价电子填充数; (c) 柯西压力C12C44随原子序数变化; (d) 稀土金属的熔点[28]

    Figure 2.  (a) Ratio of bulk modulus to shear modulus (B/G ) for rare earth metals. Comparisons are made with the experimental results[23,24]. (b) The s- and d-valence electron occupation numbers calculated using the f-core method. (c) The variation of Cauchy pressure (C12C44) with the atomic number. (d) Melting points for rare-earth metals[28].

    图 3  (a) Ce体模量随压强的变化; (b) 剪切模量随压强的变化; (c) 纵波声速随压强的变化; (d) 横波声速随压强的变化. 并与已有的实验结果[1113,30]进行比较, 图中虚线是实验给出的Ce的γ-α相变压力点

    Figure 3.  (a) Bulk modulus B for Ce as a function of pressure. (b) Shear modulus G as a function of pressure. (c) Longitudinal wave velocity CL as a function of pressure. (d) Transverse wave velocity CT as a function of pressure. Comparisons are made with existing experimental results [11-13,30]. The dashed line in the figure marks the experimentally reported γ-α phase transition pressure.

    图 4  (a) B/G随压强的变化关系, 并与已有的实验结果[1113,30]进行比较; (b) s价电子数随压强的变化; (c) d, f价电子数随压强的变化; (d) 柯西压力C12C44随压强的变化

    Figure 4.  (a) B/G ratio as a function of pressure. Comparisons with existing experimental results[1113,30] are provided. (b) The s-valence electron occupation as a function of pressure. (c) The d, f-valence electron occupation as a function of pressure. (d) Cauchy pressure (C12C44) as a function of pressure.

    图 5  Yb的fcc-bcc相焓差随压强的变化

    Figure 5.  Enthalpy difference between fcc and bcc phase for Yb as a function of pressure.

    图 6  (a) Yb的体模量随压强的变化, 小图为相变压力点附近体模量随压强的变化; (b) 剪切模量随压强的变化; (c) 纵波声速随压强的变化; (d) 横波声速随压强的变化. 并与已有的实验结果[9]进行比较

    Figure 6.  (a) Bulk modulus for Yb as a function of pressure, with the inset showing the bulk modulus variation near the phase transition pressure. (b) Shear modulus as a function of pressure. (c) Longitudinal wave velocity CL as a function of pressure. (d) Transverse wave velocity CT as a function of pressure. Comparisons with existing experimental results[9] are provided.

    图 7  (a) 对于Yb, B/G随压强的变化, 并与已有的实验结果[9]进行比较; (b) s价电子数随压强变化; (c) d价电子数随压强变化; (d) 柯西压力C12C44随压强的变化

    Figure 7.  (a) B/G ratio for Yb as a function of pressure. Comparisons with existing experimental results[9] are provided. (b) The s-valence electron occupation as a function of pressure. (c) The d-valence electron occupation as a function of pressure. (d) Cauchy pressure (C12C44) as a function of pressure.

    表 1  实验与理论计算的镧系元素Ce-Yb弹性性质

    Table 1.  Calculated elastic constants, bulk modulus (B), shear modulus (G) and B/G for rare earth Ce-Yb.

      Method B/GPa G/GPa C11 C12 C44 C13 C33 B/G Ref.
    Ce f-band 39.80 33.24 63.20 28.10 50.90 1.19 This work
    GGA+OP, f-band 40.89 [16]
    PBE, f-core 29.23 13.72 39.29 24.21 20.45 2.13 This work
    PBE, f-core 34.62 [21]
    GGA, f-core 30.21 15.86 43.46 23.59 21.71 1.90 [22]
    γ -Ce PBE+U 27.20 15.76 40.59 20.52 21.33 1.73 This work
    Expt. 14.83 12.86 24.1 10.2 19.4 1.15 [25]
    Pr PBE, f-band 20.64 18.75 39.30 11.31 22.80 1.10 This work
    GGA+OP, f-band 20.88 [16]
    PBE, f-core 31.66 16.45 44.80 25.10 23.20 1.92 This work
    GGA, f-core 36.65 [21]
    GGA, f-core 34.57 18.83 60.77 25.36 17.4 17.88 67.34 1.83 [22]
    PBE+U 24.27 11.58 35.20 18.80 14.60 2.09 This work
    Expt. 28.80 14.80 1.95 [24]
    Nd PBE, f-band 18.9 14.95 30.90 12.90 21.00 1.26 This work
    GGA+OP, f-band 20.98 [16]
    PBE, f-core 33.9 18.55 49.10 26.29 25.70 1.83 This work
    GGA, f-core 39.12 [21]
    GGA, f-core 36.12 20.77 65.24 25.88 19.11 17.77 71.77 1.74 [22]
    PBE+U 28.57 25.65 46.90 19.41 38.90 1.11 This work
    Expt. 31.8 16.3 1.95 [24]
    Pm PBE, f-band 20.67 14.81 31.60 15.20 22.00 1.2 This work
    GGA+OP, f-band 19.92 [16]
    PBE, f-core 35.67 20.37 52.40 27.31 28.20 1.75 This work
    GGA, f-core 39.21 [21]
    GGA, f-core 37.96 23.21 70.36 24.63 21.00 18.62 77.17 1.64 [22]
    PBE+U 16.80 10.94 24.20 13.10 17.20 1.54 This work
    Expt. 35.37 16.70 2.12 [23]
    Sm PBE, f-band 18.70 4.87 18.10 19.00 18.50 3.84 This work
    GGA+OP, f-band 19.91 [16]
    PBE, f-core 36.81 21.72 54.60 27.91 30.10 1.69 This work
    GGA, f-core 38.94 [21]
    GGA, f-core 36.91 19.60 61.81 21.27 18.64 24.56 68.58 1.88 [22]
    PBE+U 12.10 7.39 15.90 10.21 13.70 1.64 This work
    Expt. 29.46 12.68 2.32 [23]
    Eu PBE, f-band 14.33 7.51 16.60 13.20 17.70 2.32 This work
    PBE, f-core 12.93 9.07 17.61 10.60 16.80 1.43 This work
    GGA, f-core 14.67 [21]
    GGA, f-core 12.52 8.40 16.46 10.55 16.34 1.49 [22]
    PBE+U 12.20 7.56 16.20 10.21 13.80 1.61 This work
    Expt. 14.75 5.90 2.5 [23]
    Gd PBE, f-band 30.50 16.31 42.70 24.40 24.00 1.87 This work
    GGA+OP, f-band 28.99 [16]
    Gd PBE, f-core 39.54 24.12 59.60 29.50 33.10 1.64 This work
    GGA, f-core 36.74 [21]
    GGA, f-core 41.73 22.11 68.26 21.00 21.01 30.04 80.3 1.89 [22]
    PBE+U 31.64 19.06 47.10 23.91 26.60 1.66 This work
    Expt. 38.40 22.31 1.72 [23]
    Tb PBE, f-band 24.37 16.76 36.50 18.30 25.20 1.45 This work
    GGA+OP, f-band 30.15 [16]
    PBE, f-core 41.37 25.17 62.70 30.70 34.10 1.64 This work
    GGA, f-core 36.28 [21]
    GGA, f-core 40.87 22.77 68.43 20.07 21.85 28.59 79.25 1.79 [22]
    PBE+U 32.90 15.70 46.10 26.31 21.40 2.09 This work
    Expt. 39.99 22.90 1.75 [23]
    Dy GGA+OP, f-band 29.08 [16]
    PBE, f-core 41.27 25.48 62.80 30.50 34.60 1.62 This work
    GGA, f-core 36.74 [21]
    GGA, f-core 42.14 24.48 70.93 20.53 23.97 20.53 28.75 1.72 [22]
    Expt. 38.50 25.45 1.51 [23]
    Ho PBE, f-band 29.09 14.26 35.90 25.69 27.50 2.04 This work
    GGA+OP, f-band 29.88 [16]
    PBE, f-core 42.14 26.15 64.80 30.80 34.90 1.61 This work
    GGA, f-core 38.20 [21]
    GGA, f-core 44.12 26.26 75.40 22.30 26.74 29.63 85.06 1.68 [22]
    PBE+U 14.63 7.03 15.50 14.19 20.40 2.08 This work
    Expt. 39.75 26.73 1.49 [23]
    Er PBE, f-band 32.73 9.51 34.40 31.90 26.00 3.46 This work
    GGA+OP, f-band 29.95 [16]
    PBE, f-core 42.60 27.78 65.60 31.10 34.80 1.53 This work
    GGA, f-core 40.12 [21]
    GGA, f-core 45.82 28.60 81.54 24.27 28.85 28.34 88.05 1.60 [22]
    PBE+U 29.43 17.13 35.70 26.30 37.50 1.72 This work
    Expt. 41.15 29.68 1.38 [23]
    Tm PBE, f-band 20.75 15.21 47.70 8.86 9.02 3.86 58.40 1.36 This work
    GGA+OP, f-band 27.93 [16]
    PBE, f-core 42.93 26.46 67.00 30.90 34.20 1.62 This work
    GGA, f-core 42.41 [21]
    GGA, f-core 48.23 31.02 88.44 25.58 30.28 28.04 94.21 1.58 [22]
    PBE+U 21.81 10.97 25.60 19.92 24.59 1.99 This work
    Expt. 44.5 30.5 1.45 [24]
    Yb PBE, f-band 16.63 10.55 20.10 14.89 24.10 1.58 This work
    PBE, f-core 15.87 9.35 18.60 14.50 22.30 1.69 This work
    GGA, f-core 15.58 [21]
    GGA, f-core 16.34 10.72 23.21 12.91 17.44 1.52 [22]
    PBE+U 10.68 3.82 17.66 13.33 20.75 2.79 This work
    Expt. 13.13 9.9 1.33 [24]
    DownLoad: CSV
  • [1]

    McMahan A K, Huscroft C, Scalettar R T, Pollock E L 1998 J. Comput. Aid Mol. Des. 5 131Google Scholar

    [2]

    Grimvall G 1999 Thermophysical Properties of Materials (Amsterdam: Elsevier

    [3]

    Jia T T, Chen G, Zhang Y S 2017 Phys. Rev. B 95 155206Google Scholar

    [4]

    Li W G, Kou H B, Zhang X Y, Ma J Z, Li Y, Geng P J, Wu X Z, Chen L M, Fang D N 2019 Mech. Mater. 139 103194Google Scholar

    [5]

    Pugh S 1954 Philos. Mag. 45 823Google Scholar

    [6]

    Xu L, Li X, He Q, Yang J, Sun S L, Li J, Hu J B, Wu Q 2025 J. Appl. Phys. 137 015902Google Scholar

    [7]

    谢明宇, 李法新 2022 力学进展 52 33Google Scholar

    Xie M Y, Li F X 2022 Adv. Mech. 52 33Google Scholar

    [8]

    Kittel C 1996 Introduction to Solid State Physics (New York: Wiley

    [9]

    Boguslavskii Y Y, Goncharov V A, Il'ina G G 1989 J. Less-Common Met. 147 249Google Scholar

    [10]

    Jeong I K, Darling T W, Graf M J, Proffen T, Heffner R H, Lee Y, Vogt T, Jorgensen J D 2004 Phys. Rev. Lett. 92 105702Google Scholar

    [11]

    Decremps F, Antonangeli D, Amadon B, Schmerber G 2009 Phys. Rev. B 80 132103Google Scholar

    [12]

    Wang Z G, Bi Y, Xu L, Liu L 2014 Mater. Res. 1 026501Google Scholar

    [13]

    Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J, Mcmahan A K 2008 Phys. Rev. Lett. 101 165703Google Scholar

    [14]

    Lipp M J, Jenei Z, Cynn H, Kono Y, Park C, Kenney-Benson C, Evans W J 2017 Nat. Commun. 8 1198Google Scholar

    [15]

    Xu L, Wang Z G, Li Z G, Li X H, Yao S L, Li J, Zhou X M, Yu Y Y, Hu J B, Wu Q 2021 Appl. Phys. Lett. 118 074102Google Scholar

    [16]

    Söderlind P, Turchi P E A, Landa A, Lordi V 2014 J. Phys. : Condens. Matter. 26 416001Google Scholar

    [17]

    Hill R 1952 Proc. Phys. Soc. A 65 349Google Scholar

    [18]

    Yang Z, Xian J W, Gao X Y, Tian F Y, Song H F 2024 J. Chem. Phys. 161 194101Google Scholar

    [19]

    Blöchl P E 1994 Phys. Rev. B Condens Matter. 50 17953Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Delin A, Fast L, Johansson B, Eriksson O, Wills J M 1998 Phys. Rev. B 58 4345Google Scholar

    [22]

    Ouyang Y F, Tao X M, Zeng F J, Chen H M, Du Y, Feng Y P, He Y 2009 Physica B 404 2299Google Scholar

    [23]

    Seitz F, Turnbull D 1964 Solid State Physics: Advance in Research and Applications (New York: Academic press

    [24]

    Material Properties https://material-properties.org [2025-03-19]

    [25]

    Stassis C, Gould T, McMasters O D, Gschneidner K A, Nicklow R M 1979 Phys. Rev. B 19 5746Google Scholar

    [26]

    Pettifor D G 1992 Mater. Sci. Tech. 8 345Google Scholar

    [27]

    Eberhart M E, Jones T E 2012 Phys. Rev. B 86 134106Google Scholar

    [28]

    Kim S, Chen J, Cheng T, et al. PubChem 2025 update. 2025 Nucleic Acids Res. 53 D1516. https://pubchem.ncbi.nlm.nih.gov/periodic-table/melting-point/ [2025-03-19]

    [29]

    Nikolaev A V, Tsvyashchenko A V 2012 Phys. -Usp. 55 657Google Scholar

    [30]

    Voronov F F, Goncharova V A, Stal'gorova O V 1979 J. Exp. Theor. Phys. 49 687

    [31]

    Chen J L, Kaltsoyannis N 2022 J. Phys. Chem. C 126 11426Google Scholar

    [32]

    Eryigit S, Parlak C, Eryigit R 2022 J. Phys. : Condens. Matter 34 295402Google Scholar

    [33]

    Tran F, Karsai F, Blaha P 2014 Phys. Rev. B 89 155106Google Scholar

    [34]

    Chesnut G N, Vohra Y K 1999 Phys. Rev. Lett. 82 1712Google Scholar

    [35]

    Morée J B, Amadon B 2018 Phys. Rev. B 98 205101Google Scholar

    [36]

    Satikunvar D D, Bhatt N K, Thakore B Y 2021 J. Appl. Phys. 129 035107Google Scholar

  • [1] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-Qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of magnetic Janus materials based on machine learning and first-principles calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [3] Lü Chang-Wei, Wang Chen-Ju, Gu Jian-Bing. First-principles study of structural, elastic, thermodynamic, electronic and optical properties of cubic boron nitride and hexagonal boron nitride at high temperature and high pressure. Acta Physica Sinica, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [4] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [5] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [6] Wang Hao-Yu, Nong Zhi-Sheng, Wang Ji-Jie, Zhu Jing-Chuan. Relationship between compositions and elastic properties of AlxCrFeNiTi high entropy alloys. Acta Physica Sinica, 2019, 68(3): 036101. doi: 10.7498/aps.68.20181893
    [7] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [8] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [9] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [10] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [11] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [12] Fan Kai-Min, Yang Li, Sun Qing-Qiang, Dai Yun-Ya, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles study on elastic properties of hexagonal phase ErAx (A=H, He). Acta Physica Sinica, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [13] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [14] Wang Bin, Liu Ying, Ye Jin-Wen. First-principle calculations of elastic, electronic and thermodynamic properties of TiC under high pressure. Acta Physica Sinica, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [15] Ru Qiang, Hu She-Jun, Zhao Ling-Zhi. First-principles study of the electronic structure and elastic property of Li x FePO4. Acta Physica Sinica, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [16] Yang Li-Jun, Chen Hai-Chuan. First-principles calculations of electronic structure, optical and elastic properties of LiGaX2(X=S, Se, Te). Acta Physica Sinica, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [17] Li Xiao-Feng, Liu Zhong-Li, Peng Wei-Min, Zhao A-Ke. Elastic and thermodynamic properties of CaPo under pressure via first-principles calculations. Acta Physica Sinica, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [18] Hou Yu-Qing, Zhang Xiao-Dong, Jiang Zhen-Yi. First-principles calculation of structure, electronic and elastic properties of MAlH4(M=Na, K). Acta Physica Sinica, 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [19] Yang Tian-Xing, Cheng Qiang, Xu Hong-Bin, Wang Yuan-Xu. First-principles study of elastic and electronic properties of several ternary transition-metal carbides. Acta Physica Sinica, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [20] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Pang Li-Juan, Zheng Xin, Gao Tao. The first-principles study on the elasticity of V-based solid solution hydrogen storage materials. Acta Physica Sinica, 2009, 58(10): 7044-7049. doi: 10.7498/aps.58.7044
Metrics
  • Abstract views:  611
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2025
  • Accepted Date:  23 May 2025
  • Available Online:  11 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回