-
Rare earth metals are of significant importance in engineering and technological applications, while their unique f-electron-related behaviors have attracted broad interest in condensed matter physics. In this work, we investigate the elastic properties of rare earth metals from Ce to Yb by combining first-principles calculations with systematic data compilation. Focusing on Ce and Yb as representative cases, we investigate the evolution of their elastic properties under high-pressure conditions (0-15 GPa) and systematically compare the simulation performance of different f-electron treatment approaches. The results indicate a pronounced ductility difference between light and heavy rare earth metals at ambient pressure. Under pressure, the elastic properties of Ce and Yb undergo marked changes at phase transitions. Specifically, the B/G ratio (a key indicator of metal ductility) decreases from approximately 2.0 in light lanthanides to around 1.5 in heavy lanthanides, crossing the critical brittleness threshold of 1.75. Notably, during the fcc isostructural phase transition in Ce and the fcc-bcc phase transition in Yb, a significant brittle-ductile transition is observed. These transitions correlate closely with the bonding characteristics modulated by atomic number or pressure conditions. For instance, as the atomic number increases, the Cauchy pressure (C12 - C44) decreases with the variation of s/d valence electron counts, indicating an enhanced covalent bonding tendency. Furthermore, the study reveals that simulations treating f-electrons as core electrons can adequately describe the elastic properties and trends of rare earth metals under ambient pressure. However, when modeling high-pressure structural phase transitions and their associated elastic evolution, approaches that treat f-electrons as valence electrons with explicit electronic correlation corrections demonstrate better accuracy.This dataset is publicly available and can be accessed via the Science Data Bank at https://www.scidb.cn/s/IBnuQz.
-
[1] McMahan A K, Huscroft C, Scalettar R T, Pollock E L 1998 J. Comput. Aid Mol. Des. 5 131
[2] Grimvall G 1999 Thermophysical Properties of Materials (Amsterdam: Elsevier).
[3] Jia T, Chen G, Zhang Y 2017 Phys. Rev. B 95 155206
[4] Li W, Kou H, Zhang X, Ma J, Li Y, Geng P, Wu X, Chen L, Fang D 2019 Mech. Mater. 139 103194
[5] Pugh S 1954 Philos. Mag. 45 823
[6] Xu L, Li X, He Q, Yang J, Sun S, Li J, Hu J, Wu Q 2025 J. Appl. Phys. 137 015902
[7] Xie M, Li F 2022 Advances in Mechanics, 52 33(谢明宇, 李法新 2022 力学进展 52 33)
[8] Kittel C 1996 Introduction to Solid State Physics (New York:Wiley).
[9] Boguslavskii Y Y, Goncharov V A, Il'ina G G 1989 J. Less-Common Met. 147 249
[10] Jeong I K, Darling T W, Graf M J, Proffen T, Heffner R H, Lee Y, Vogt T, Jorgensen J D 2004 Phys. Rev. Lett. 92 105702
[11] Decremps F, Antonangeli D, Amadon B, Schmerber G 2009 Phys. Rev. B 80
[12] Wang Z, Bi Y, Xu L, Liu L 2014 Mater. Res., 1 026501
[13] Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J, Mcmahan A K 2008 Phys. Rev. Lett. 101 165703
[14] Lipp M J, Jenei Z, Cynn H, Kono Y, Park C, Kenney-Benson C, Evans W J 2017 Nat. Commun. 8 1198
[15] Xu L, Wang Z, Li Z, Li X, Yao S, Li J, Zhou X, Yu Y, Hu J, Wu Q 2021 Appl. Phys. Lett. 118 074102
[16] Söderlind P, Turchi P E A, Landa A, Lordi V 2014 J. Phys.: Condens. Matter. 26 416001
[17] Hill R 1952, Proc. Phys. Soc. A 65 349
[18] Yang Z, Xian J, Gao X, Tian F, Song H 2024 J. Chem. Phys. 161, 194101
[19] Blöchl P E, 1994 Phys Rev B Condens Matter. 50 17953
[20] Perdew J P, Burke K, Ernzerhof M, 1996 Phys. Rev. Lett. 77, 3865
[21] Delin A, Fast L, Johansson B, Eriksson O, Wills J M, 1998 Phys. Rev. B 58, 4345
[22] Ouyang Y F, Tao X M, Zeng F J, Chen H M, Du Y, Feng Y P, He Y 2009 Phys. B 404 2299
[23] Seitz F, Turnbull D 1964 Solid State Physics: Advance in Research and Applications (New York:Academic press)
[24] Material Properties, https://material-properties.org [2025-03-19]
[25] Pettifor D G 1992 Mater. Sci. Tech. 8 345
[26] Eberhart M E, Jones T E 2012 Phys. Rev. B 86 134106
[27] PubChem Kim S, Chen J, Cheng T, et al. 2025 update. Nucleic Acids Res. 2025;53(D1):D1516-D1525. https://pubchem.ncbi.nlm.nih.gov/ [2025-03-19]
[28] Gurtin M E, Fried E, Anand L (2010) The Mechanics and Thermodynamics of Continua. (Cambridge: Cambridge University Press)
[29] Stassis C, Gould T, McMasters O D, Gschneidner K A, Nicklow R M, 1979 Phys. Rev. B 19 5746
[30] Nikolaev A V and Tsvyashchenko A V, 2012 Phys.-Usp. 55 657
[31] Chen J L, Kaltsoyannis N, 2022 J. Phys. Chem. C 126 11426
[32] Eryigit S, Parlak C, Eryigit R 2022 J. Phys.: Condens. Matter 34 295402
[33] Tran F, Karsai F, Blaha P 2014 Phys. Rev. B 89 155106
[34] Voronov F F, Goncharova V A, Stal'gorova O V. 1979 J. Exp. Theor. Phys. 49 687
[35] Chesnut G N, Vohra Y K 1999 Phys. Rev. Lett, 82 1712
[36] Morée J-B, Amadon B 2018 Phys. Rev. B 98 205101
[37] Satikunvar D D, Bhatt N K, Thakore B Y, 2021 J. Appl. Phys.,129, 035107
[38]
Metrics
- Abstract views: 94
- PDF Downloads: 2
- Cited By: 0