Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of solution conductivity on discharge mode in alternating-current voltage driven liquid-electrode discharge

LI Xuechen ZHANG Xi ZHU Guoji PANG Xuexia JIA Pengying SUN Hui RAN Junxia LI Qing LI Jinmao

Citation:

Influence of solution conductivity on discharge mode in alternating-current voltage driven liquid-electrode discharge

LI Xuechen, ZHANG Xi, ZHU Guoji, PANG Xuexia, JIA Pengying, SUN Hui, RAN Junxia, LI Qing, LI Jinmao
cstr: 32037.14.aps.74.20250680
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A liquid-electrode discharge system excited by an alternating-current sinusoidal voltage is employed to investigate the discharge modes with varying liquid conductivity (σ). The results indicate that with σ increasing, the discharge transitions from the uniform mode to the pattern mode, which undergoes various self-organized patterns such as gear, circular saw, discrete spots, single-arm spiral, and concentric rings on the liquid surface. The voltage and current waveforms reveal that the discharge occurs only in the negative half-cycle of applied voltage (when the liquid acts as the instantaneous anode). After gas breakdown, the discharge current rises rapidly to a peak, and then slowly decreases. For the uniform mode, the current decreases monotonically. However, during the current decreasing in the pattern mode, there appears a plateau in which the current keeps almost invariant with time. As σ increases, the values of the peak current and the plateau increase, and the breakdown moment advances. In addition, fast photography achieved through an intensified charge-coupled device (ICCD) shows that regardless of the discharge mode, a uniform disk is initially generated on the liquid surface, and various non-uniform patterns are formed during the plateau stage. Based on the reaction-diffusion model, numerical simulations are carried out through changing ion strength and current strength, which are related to the variables m and l. The simulated discharge modes are well in line with those obtained in the experiments. Moreover, spectral line intensity ratios related to electron temperature and electron density are determined through the spectra emitted from the discharge near the liquid surface. By fitting the spectra, gas temperature and molecular vibration temperature are obtained, which show an increasing trend with σ increasing.
      Corresponding author: LI Jinmao, plasmalab@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375250, 11875121, 51977057, 11805013). the Natural Science Foundation of Hebei Province, China (Grant Nos. A2022201036, A2023201012), the Optoelectronic Information Materials Laboratory Performance Subsidy Fund Program of Hebei Province, China (Grant No. 22567634H), the Funds for Distinguished Young Scientists of Hebei Province, China (Grant No. A2012201045), the Natural Science Interdisciplinary Research Program of Hebei University, China (Grant Nos. DXK201908, DXK202011), and the Post-graduate’s Innovation Fund Program of Hebei University, China (Grant No. HBU2022bs004).
    [1]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001Google Scholar

    [2]

    李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程 2018 物理学报 67 075201Google Scholar

    Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018 Acta Phys. Sin. 67 075201Google Scholar

    [3]

    Saifutdinov A I 2022 Plasma Sources Sci. Technol. 31 094008Google Scholar

    [4]

    Richmonds C, Sankaran R M 2008 Appl. Phys. Lett. 93 131501Google Scholar

    [5]

    Foster J E, Kovach Y E, Lai J, Garcia M C 2020 Plasma Sources Sci. Technol. 29 034004Google Scholar

    [6]

    Kovačević V V, Sretenović G B, Obradović B M, Kuraica M M 2022 J. Phys. D: Appl. Phys. 55 473002Google Scholar

    [7]

    杨双越, 温小琼, 杨天元, 李霄 2024 物理学报 73 075203Google Scholar

    Yang S Y, Wen X Q, Yang Y T, Li X 2024 Acta Phys. Sin. 73 075203Google Scholar

    [8]

    Jamróz P, Gręda K, Pohl P, Żyrnicki W 2014 Plasma Chem Plasma Process. 34 25Google Scholar

    [9]

    Webb M R, Hieftje G M 2009 Anal. Chem. 81 862Google Scholar

    [10]

    Chen Q, Li J S, Li Y F 2015 J. Phys. D: Appl. Phys. 48 424005Google Scholar

    [11]

    Zheng P C, Liu K M, Wang J M, Dai Y, Yu B, Zhou X J, Hao H G, Luo Y 2012 Appl. Surf. Sci. 259 494Google Scholar

    [12]

    Chen Z T, Xu R G, Chen P J, Wang Q 2020 IEEE Trans. Plasma Sci. 48 3455Google Scholar

    [13]

    Liang J P, Zhao Z L, Zhou X F, Yang D Z, Yuan H, Wang W C, Qiao J J 2020 Vacuum 181 109644Google Scholar

    [14]

    Zhang S, Oehrlein G S 2021 J. Phys. D: Appl. Phys. 54 213001Google Scholar

    [15]

    Vanraes P, Bogaerts A 2021 J. Appl. Phys. 129 220901Google Scholar

    [16]

    Bruggeman P, Ribežl E, Maslani A, Degroote J, Malesevic A, Rego R, Vierendeels J, Leys C 2008 Plasma Sources Sci. Technol. 17 025012Google Scholar

    [17]

    Shirai N, Suga G, Sasaki K 2020 Plasma Sources Sci. Technol. 29 025007Google Scholar

    [18]

    Shirai N, Ichinose K, Uchida S, Tochikubo F 2011 Plasma Sources Sci. Technol. 20 034013Google Scholar

    [19]

    Bruggeman P, Liu J J, Degroote J, Kong M G, Vierendeels J, Leys C 2008 J. Phys. D: Appl. Phys. 41 215201Google Scholar

    [20]

    Xu S F, Zhong X X 2015 Phys. Plasmas 22 103519Google Scholar

    [21]

    Xu S F, Zhong X X 2016 Phys. Plasmas 23 010701Google Scholar

    [22]

    Jia P, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y, Li X C 2021 Plasma Sources Sci. Technol. 30 095021Google Scholar

    [23]

    Gao K, Wu K Y, Jia P Y, Jia B Y, Kang P C, Li X C 2019 Phys. Plasmas 26 113501Google Scholar

    [24]

    Zhang S Q, Dufour T 2018 Phys. Plasmas 25 073502Google Scholar

    [25]

    Rumbach P, Lindsay A E, Go D B 2019 Plasma Sources Sci. Technol. 28 105014Google Scholar

    [26]

    Shirai N, Ibuka S, Ishii S 2009 Appl. Phys. Express 2 036001Google Scholar

    [27]

    Yang Z M, Kovach Y, Foster J 2021 J. Appl. Phys. 129 163303Google Scholar

    [28]

    Verreycken T, Bruggeman P, Leys C 2009 J. Appl. Phys 105 083312Google Scholar

    [29]

    Shirai N, Uchida S, Tochikubo F 2014 Plasma Sources Sci. Technol. 23 054010Google Scholar

    [30]

    Li X C, Kang P C, Gao K, Zhou S, Wu K Y, Jia P Y 2020 Plasma Processes Polym. 17 1900223Google Scholar

    [31]

    Kovach Y E, Garcia M C, Foster J E 2021 Plasma Sources Sci. Technol. 30 015007Google Scholar

    [32]

    Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717Google Scholar

    [33]

    Qin X R, Feng B W, Wang R Y, Ma Y P X, Zhang Q, Zhong X X 2024 Plasma Processes Polym. 21 2300055Google Scholar

    [34]

    Li X C, Geng J L, Jia P Y, Zhang P P, Zhang Q, Li Y R 2017 Phys. Plasmas 24 113504Google Scholar

    [35]

    Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2014 Plasma Sources Sci. Technol. 24 015010Google Scholar

    [36]

    Srivastava T, Simeni M S, Nayak G, Bruggeman P J 2022 Plasma Sources Sci. Technol. 31 085010Google Scholar

    [37]

    Shirai N, Uchida S, Tochikubo F, Ishii S 2011 IEEE Trans. Plasma Sci. 39 2652Google Scholar

    [38]

    Chen Y F, Feng B W, Zhang Q, Wang R Y, Ostrikov K (Ken), Zhong X X 2020 Plasma Sci. Technol. 22 055404Google Scholar

    [39]

    Li J M, Zhang X, Tian S, Meng T T, Wan W J, Ran J X, Sun H, Jia P Y, Pang X X, Li X C 2025 Phys. Plasmas 32 032107Google Scholar

    [40]

    Ghimire B, Kolobov V I, Xu K G 2023 Phys. Scr. 98 095602Google Scholar

    [41]

    Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021 Phys. Plasmas 28 073501Google Scholar

    [42]

    Rajzer Y P 1997 Gas Discharge Physicst (Berlin Heidelberg: Springer) p167

    [43]

    Purwins H G, Stollenwerk L 2014 Plasma Phys. Control. Fusion 56 123001Google Scholar

    [44]

    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002Google Scholar

    [45]

    陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar

    Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar

    [46]

    李汉明, 李钢, 李英骏, 李玉同, 张翼, 程涛, 聂超群, 张杰 2008 物理学报 57 0969Google Scholar

    Li H M, Li G, Li Y J, Li Y T, Zhang Y, Cheng T, Nie C Q, Zhang J 2008 Acta Phys. Sin. 57 0969Google Scholar

    [47]

    李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪 2013 物理学报 62 165205Google Scholar

    Li X C, Chang Y Y, Liu R F, Zhao H H, Di C 2013 Acta Phys. Sin. 62 165205Google Scholar

    [48]

    Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015 Plasma Sources Sci. Technol. 24 064003Google Scholar

    [49]

    张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰 2024 物理学报 73 085201Google Scholar

    Zhang X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201Google Scholar

    [50]

    Choi J H, Lee T I, Han I, Baik H K, Song K M, Lim Y S, Lee E S 2006 Plasma Sources Sci. Technol. 15 416Google Scholar

    [51]

    Liu Y D, Yan H J, Guo H F, Fan Z H, Wang Y Y, Wu Y, Ren C S 2018 Phys. Plasmas 25 033519Google Scholar

    [52]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [53]

    Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023 Plasma Processes Polym. 20 2200188Google Scholar

  • 图 1  实验装置示意图

    Figure 1.  Schematic diagram of the experimental setup.

    图 2  曝光时间texp为0.25 ms, 溶液σ变化时(a)均匀模式和(b)—(f)斑图模式的照片, 其中(b)齿轮模式; (c)锯盘模式; (d)离散点模式; (e)单臂螺旋模式; (f)同心圆环模式

    Figure 2.  Images of the uniform mode (a) and the self-organized patterns (b)–(f) with varying σ. Panel (b)–(f) correspond to (b) gear, (c) circular saw, (d) discrete spots, (e) single-arm spiral, and (f) concentric rings, respectively. The exposure time (texp) is 0.25 ms.

    图 3  溶液σ变化时(不同放电模式)施加电压与放电电流的波形.

    Figure 3.  Waveforms of applied voltage and discharge current with varying σ (different discharge modes).

    图 4  单次曝光ICCD (texp = 500 ns)拍摄液面上放电的时间演化图像(ICCD的门时刻在对应的电流波形中标注) (a) 均匀模式; (b) 齿轮模式; (c) 锯盘模式; (d) 离散点模式; (e) 单臂螺旋模式; (f) 同心圆环模式

    Figure 4.  Single-shot ICCD images with texp of 500 ns for the discharges on the liquid surface: (a) The uniform mode; (b) gear pattern; (c) circular saw pattern; (d) discrete spots pattern; (e) single-arm spiral pattern; (f) concentric rings pattern. The gate moments of the ICCD are labelled in the corresponding current waveform.

    图 5  (a) 单次曝光ICCD (texp = 500 ns) 拍摄的均匀模式和斑图模式的照片; (b) 利用反应-扩散模型获得不同变量(lm)值的放电模式

    Figure 5.  (a) Images of the uniform mode and the patterns captured by the ICCD with texp of 500 ns; (b) the discharge modes predicted by the reaction-diffusion model with different values of variables (l and m).

    图 6  (a) 300—800 nm扫描范围内来自于液体表面的发射光谱; (b) $ {\text{N}}_{2}^{+}{(}{\text{B}}^{2}{\Sigma}_{\text{u}}^{+}\to{\text{X}}^{2}{\Sigma}_{\text{g}}^{+}{)} $ 转动谱带拟合实例; (c), (d) TeNe (c)及TvTg (d)随σ的变化

    Figure 6.  (a) 300 to 800 nm scanned spectrum emitted from the discharge near the liquid surface; (b) experimental and simulated spectra of $ {\text{N}}_{2}^{+}{(}{\text{B}}^{2}{\Sigma}_{\text{u}}^{+}\to{\text{X}}^{2}{\Sigma}_{\text{g}}^{+}{)} $; (c), (d) Te and Ne (c), Tv and Tg (d) as a function of σ.

  • [1]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001Google Scholar

    [2]

    李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程 2018 物理学报 67 075201Google Scholar

    Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018 Acta Phys. Sin. 67 075201Google Scholar

    [3]

    Saifutdinov A I 2022 Plasma Sources Sci. Technol. 31 094008Google Scholar

    [4]

    Richmonds C, Sankaran R M 2008 Appl. Phys. Lett. 93 131501Google Scholar

    [5]

    Foster J E, Kovach Y E, Lai J, Garcia M C 2020 Plasma Sources Sci. Technol. 29 034004Google Scholar

    [6]

    Kovačević V V, Sretenović G B, Obradović B M, Kuraica M M 2022 J. Phys. D: Appl. Phys. 55 473002Google Scholar

    [7]

    杨双越, 温小琼, 杨天元, 李霄 2024 物理学报 73 075203Google Scholar

    Yang S Y, Wen X Q, Yang Y T, Li X 2024 Acta Phys. Sin. 73 075203Google Scholar

    [8]

    Jamróz P, Gręda K, Pohl P, Żyrnicki W 2014 Plasma Chem Plasma Process. 34 25Google Scholar

    [9]

    Webb M R, Hieftje G M 2009 Anal. Chem. 81 862Google Scholar

    [10]

    Chen Q, Li J S, Li Y F 2015 J. Phys. D: Appl. Phys. 48 424005Google Scholar

    [11]

    Zheng P C, Liu K M, Wang J M, Dai Y, Yu B, Zhou X J, Hao H G, Luo Y 2012 Appl. Surf. Sci. 259 494Google Scholar

    [12]

    Chen Z T, Xu R G, Chen P J, Wang Q 2020 IEEE Trans. Plasma Sci. 48 3455Google Scholar

    [13]

    Liang J P, Zhao Z L, Zhou X F, Yang D Z, Yuan H, Wang W C, Qiao J J 2020 Vacuum 181 109644Google Scholar

    [14]

    Zhang S, Oehrlein G S 2021 J. Phys. D: Appl. Phys. 54 213001Google Scholar

    [15]

    Vanraes P, Bogaerts A 2021 J. Appl. Phys. 129 220901Google Scholar

    [16]

    Bruggeman P, Ribežl E, Maslani A, Degroote J, Malesevic A, Rego R, Vierendeels J, Leys C 2008 Plasma Sources Sci. Technol. 17 025012Google Scholar

    [17]

    Shirai N, Suga G, Sasaki K 2020 Plasma Sources Sci. Technol. 29 025007Google Scholar

    [18]

    Shirai N, Ichinose K, Uchida S, Tochikubo F 2011 Plasma Sources Sci. Technol. 20 034013Google Scholar

    [19]

    Bruggeman P, Liu J J, Degroote J, Kong M G, Vierendeels J, Leys C 2008 J. Phys. D: Appl. Phys. 41 215201Google Scholar

    [20]

    Xu S F, Zhong X X 2015 Phys. Plasmas 22 103519Google Scholar

    [21]

    Xu S F, Zhong X X 2016 Phys. Plasmas 23 010701Google Scholar

    [22]

    Jia P, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y, Li X C 2021 Plasma Sources Sci. Technol. 30 095021Google Scholar

    [23]

    Gao K, Wu K Y, Jia P Y, Jia B Y, Kang P C, Li X C 2019 Phys. Plasmas 26 113501Google Scholar

    [24]

    Zhang S Q, Dufour T 2018 Phys. Plasmas 25 073502Google Scholar

    [25]

    Rumbach P, Lindsay A E, Go D B 2019 Plasma Sources Sci. Technol. 28 105014Google Scholar

    [26]

    Shirai N, Ibuka S, Ishii S 2009 Appl. Phys. Express 2 036001Google Scholar

    [27]

    Yang Z M, Kovach Y, Foster J 2021 J. Appl. Phys. 129 163303Google Scholar

    [28]

    Verreycken T, Bruggeman P, Leys C 2009 J. Appl. Phys 105 083312Google Scholar

    [29]

    Shirai N, Uchida S, Tochikubo F 2014 Plasma Sources Sci. Technol. 23 054010Google Scholar

    [30]

    Li X C, Kang P C, Gao K, Zhou S, Wu K Y, Jia P Y 2020 Plasma Processes Polym. 17 1900223Google Scholar

    [31]

    Kovach Y E, Garcia M C, Foster J E 2021 Plasma Sources Sci. Technol. 30 015007Google Scholar

    [32]

    Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717Google Scholar

    [33]

    Qin X R, Feng B W, Wang R Y, Ma Y P X, Zhang Q, Zhong X X 2024 Plasma Processes Polym. 21 2300055Google Scholar

    [34]

    Li X C, Geng J L, Jia P Y, Zhang P P, Zhang Q, Li Y R 2017 Phys. Plasmas 24 113504Google Scholar

    [35]

    Zheng P C, Wang X M, Wang J M, Yu B, Liu H D, Zhang B, Yang R 2014 Plasma Sources Sci. Technol. 24 015010Google Scholar

    [36]

    Srivastava T, Simeni M S, Nayak G, Bruggeman P J 2022 Plasma Sources Sci. Technol. 31 085010Google Scholar

    [37]

    Shirai N, Uchida S, Tochikubo F, Ishii S 2011 IEEE Trans. Plasma Sci. 39 2652Google Scholar

    [38]

    Chen Y F, Feng B W, Zhang Q, Wang R Y, Ostrikov K (Ken), Zhong X X 2020 Plasma Sci. Technol. 22 055404Google Scholar

    [39]

    Li J M, Zhang X, Tian S, Meng T T, Wan W J, Ran J X, Sun H, Jia P Y, Pang X X, Li X C 2025 Phys. Plasmas 32 032107Google Scholar

    [40]

    Ghimire B, Kolobov V I, Xu K G 2023 Phys. Scr. 98 095602Google Scholar

    [41]

    Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021 Phys. Plasmas 28 073501Google Scholar

    [42]

    Rajzer Y P 1997 Gas Discharge Physicst (Berlin Heidelberg: Springer) p167

    [43]

    Purwins H G, Stollenwerk L 2014 Plasma Phys. Control. Fusion 56 123001Google Scholar

    [44]

    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002Google Scholar

    [45]

    陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照 2022 物理学报 71 240702Google Scholar

    Chen Z Y, Peng Y B, Wang R, He Y N, Cui W Z 2022 Acta Phys. Sin. 71 240702Google Scholar

    [46]

    李汉明, 李钢, 李英骏, 李玉同, 张翼, 程涛, 聂超群, 张杰 2008 物理学报 57 0969Google Scholar

    Li H M, Li G, Li Y J, Li Y T, Zhang Y, Cheng T, Nie C Q, Zhang J 2008 Acta Phys. Sin. 57 0969Google Scholar

    [47]

    李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪 2013 物理学报 62 165205Google Scholar

    Li X C, Chang Y Y, Liu R F, Zhao H H, Di C 2013 Acta Phys. Sin. 62 165205Google Scholar

    [48]

    Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015 Plasma Sources Sci. Technol. 24 064003Google Scholar

    [49]

    张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰 2024 物理学报 73 085201Google Scholar

    Zhang X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201Google Scholar

    [50]

    Choi J H, Lee T I, Han I, Baik H K, Song K M, Lim Y S, Lee E S 2006 Plasma Sources Sci. Technol. 15 416Google Scholar

    [51]

    Liu Y D, Yan H J, Guo H F, Fan Z H, Wang Y Y, Wu Y, Ren C S 2018 Phys. Plasmas 25 033519Google Scholar

    [52]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [53]

    Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023 Plasma Processes Polym. 20 2200188Google Scholar

  • [1] TIAN Shuang, ZHANG Han, ZHANG Xi, ZHANG Xuexue, LI Xuechen, LI Qing, RAN Junxia. Discharge characteristics and parameter diagnosis of dielectric barrier discharge patterns in double-gap configuration. Acta Physica Sinica, 2025, 74(11): 115202. doi: 10.7498/aps.74.20250111
    [2] RAN Junxia, ZHANG Han, CHEN Qinyi, ZHOU Yixun, SU Tong, LI Qing, LI Xuechen. Discharge evolution mechanism and spectral diagnostic study of loop dot-matrix concentric-roll pattern. Acta Physica Sinica, 2025, 74(18): 185202. doi: 10.7498/aps.74.20250737
    [3] Fu Qiang, Wang Cong, Wang Yu-Fei, Chang Zheng-Shi. Comparative study on discharge characteristics of low pressure CO2 driven by sinusoidal AC voltage: DBD and bare electrode structure. Acta Physica Sinica, 2022, 71(11): 115204. doi: 10.7498/aps.71.20220086
    [4] Dai Bi-Tao, Tan Suo-Yi, Chen Sa-Ran, Cai Meng-Si, Qin Shuo, Lu Xin. Measuring the impact of COVID-19 on China’s population migration with mobile phone data. Acta Physica Sinica, 2021, 70(6): 068903. doi: 10.7498/aps.70.20202084
    [5] Wan Hai-Rong, Hao Yan-Peng, Fang Qiang, Su Heng-Wei, Yang Lin, Li Li-Cheng. Evolutionary dynamics of single-multiple columns in atmospheric helium dielectric barrier discharge. Acta Physica Sinica, 2020, 69(14): 145203. doi: 10.7498/aps.69.20200473
    [6] Zhang Rong-Pei, Wang Zhen, Wang Yu, Han Zi-Jian. Application of reaction diffusion model in Turing pattern and numerical simulation. Acta Physica Sinica, 2018, 67(5): 050503. doi: 10.7498/aps.67.20171791
    [7] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [8] Si Tie-Yan, Yuan Jun-Hua, Wu Yi-Lin, Jay X. Tang. Physical biology of bacterial motility. Acta Physica Sinica, 2016, 65(17): 178703. doi: 10.7498/aps.65.178703
    [9] Pan Deng, Zheng Ying-Ping. Spatiotemporal evolution model of vehicular movement Behavior under path constraints. Acta Physica Sinica, 2015, 64(7): 078902. doi: 10.7498/aps.64.078902
    [10] He Ya-Feng, Feng Xiao-Min, Zhang Liang. Control of the spatiotemporal pattern with time delayed feedback in a gas discharge system. Acta Physica Sinica, 2012, 61(24): 245204. doi: 10.7498/aps.61.245204
    [11] Jiang Hong-Yuan, Li Shan-Shan, Hou Zhen-Xiu, Ren Yu-Kun, Sun Yong-Jun. Effect of asymmetrical micro electrode surface topography on alternating current electroosmosis flow rate. Acta Physica Sinica, 2011, 60(2): 020702. doi: 10.7498/aps.60.020702
    [12] Dong Li-Fang, Xie Wei-Xia, Zhao Hai-Tao, Fan Wei-Li, He Ya-Feng, Xiao Hong. Experimental study on self-organized hexagonal superlattice pattern in dielectric barrier discharge in argon/air. Acta Physica Sinica, 2009, 58(7): 4806-4811. doi: 10.7498/aps.58.4806
    [13] Yan Xiong-Wei, Yu Hai-Wu, Cao Ding-Xiang, Li Ming-Zhong, Zheng Jian-Gang, Jiang Dong-Bin, Jiang Xing-Ying, Duan Wen-Tao, Wang Ming-Zhe. Calculation and experimental research of the spatio-temporal dynamics of Q-switched rep-rated Yb:YAG disk laser. Acta Physica Sinica, 2009, 58(8): 5798-5804. doi: 10.7498/aps.58.5798
    [14] Zhou Hai-Ping, Cai Shao-Hong, Wang Chun-Xiang. Self-organized criticality in one-dimensional sandpile model with avalanche probability included. Acta Physica Sinica, 2006, 55(7): 3355-3359. doi: 10.7498/aps.55.3355
    [15] Dong Li-Fang, Mao Zhi-Guo, Ran Jun-Xia. Study on the electrical characteristic of different modes of dielectric barrier discharge in argon. Acta Physica Sinica, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [16] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [17] Yin Zeng-Qian, Chai Zhi-Fang, Dong Li-Fang, Li Xue-Chen. Pattern formation in the dielectric barrier discharge in argon at atmospheric pressure. Acta Physica Sinica, 2003, 52(4): 925-928. doi: 10.7498/aps.52.925
    [18] Quan Hong-Jun, Wang Bing-Hong, Yang Wei-Song, Wang Wei-Ning, Luo Xiao-Shu. The self-organized segregation effect of evolutionary minority game with imitation. Acta Physica Sinica, 2002, 51(12): 2667-2670. doi: 10.7498/aps.51.2667
    [19] Dong Li-Fang, Li Xue-Chen, Yin Zeng-Qian, Wang Long. . Acta Physica Sinica, 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
    [20] CHEN WEI-ZHONG, WEI RONG-JUE. FLOQUET ANALYSIS FOR PATTERNS ON THE SURFACE OF FLUID SUBJECT TO DOUBLE-FREQUENCY EXCITATION. Acta Physica Sinica, 1999, 48(12): 2259-2265. doi: 10.7498/aps.48.2259
Metrics
  • Abstract views:  876
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2025
  • Accepted Date:  26 June 2025
  • Available Online:  24 July 2025
  • Published Online:  20 September 2025
  • /

    返回文章
    返回