-
Dielectric barrier discharge (DBD) is capable of producing abundant discharge patterns. It is one of the most interesting nonlinear systems for studying pattern formation. In this work, circular boundaries with different radii are utilized and superimposed to form a narrow and wide combined discharge gap. The pressure is set to 25 kPa for the experiment and the frequency is fixed at 58 kHz. By varying the applied voltage, Concentric-roll pattern, Loop Dot-matrix Concentric-roll pattern, Target-wave pattern and Honeycomb pattern are obtained. The electrical and optical properties of several types of pattern are analyzed. The spatio-temporal evolutionary behavior of the Loop Dot-matrix Concentric-roll pattern is focused on using an intensified charge-coupled device (ICCD), and the formation mechanism of the pattern is theoretically analyzed. The results show that the discharge pattern has a radial development with a gradual breakdown process from the outside to the inside. It is related to the pre-ionization effect of the narrow gap on the discharge. The emission spectra of different discharged filaments on the radial direction of Loop Dot-matrix Concentric-roll pattern are collected and analyzed. A spatially resolved diagnosis of plasma parameters is performed. It is found that the molecular vibrational temperature, electron density and electron temperature are much larger in narrow gap than those in wide gap. In the wide gap, the molecular vibration temperature, electron density and electron temperature gradually increase along the radial direction from the inside to the outside, but the changes are relatively small. At the narrow gap, the parameters such as the molecules vibration temperature, electron density and electron temperature farther from the center of the circle are smaller than those of closer to the center of the circle. This is related to the micro-change of the electric field.
-
Keywords:
- discharge barrier discharge /
- pattern discharge /
- spatio-temporal evolution /
- pre-ionization
-
[1] Navratil Z, Brandenburg R, Trunec D, Brablec A, St’ahel P, Wagner H E, Kopecky Z 2006 Plasma Sources Sci. Technol. 15 8
[2] Li J Y, Zhou D S, Rebrov E, Tang X, Kim M 2024 J. Phys. D: Appl. Phys. 57 395201
[3] Dong L F, Mi Y L, Pan Y Y 2020 Phys. Plasmas 27 023504
[4] Zhao X E, Hao W R 2024 Math. Biosci. 374 109222
[5] Floyd C, Dinner A R, Vaikuntanathan S 2024 Phys. Rev. Res. 6 033100
[6] Reyes L I, Pérez L M, Pedraja-Rejas L, Díaz P, Mendoza J, Bragard J, Clerc M G, Laroze D 2024 Chaos, Solitons Fractals 186 115244
[7] Nath R, Santos L 2010 Phys. Rev 81 033626
[8] Otsuka K 1989 Opt. Lett. 14 925
[9] Vorontsov M A, Firth W J 1994 Phys. Rev. A 49 2891
[10] Thomas M, Borris J, Dohse A, Eichler M, Hinze A, Lachmann K, Nagel K, Klages C P 2012 Plasma Process. Polym. 9 1086
[11] Wang H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203 (in Chinese) [万海容,郝艳捧,房强,苏恒炜,阳林,李立浧 2020 物理学报 69 145203]
[12] Feng J Y, Pan Y Y, Li C X, Liu B B, Dong L F 2020 Phys. Plasmas 27 063516
[13] Bhoj A N, Kolobov V I 2011 IEEE Trans. Plasma Sci. 39 2152
[14] Duan X X, Xu S W, Liu J, He F, Ouyang J T 2011 IEEE Trans. Plasma Sci. 39 2074
[15] Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517
[16] Li X C, Liu R, Jia P Y, Wu K Y, Ren C H, Yin Z Q 2018 Phys. Plasmas 25 013512
[17] Li Z Y, Jin S H, Xian Y B, Nie L L, Liu D W, Lu X P 2021 Plasma Sources Sci. Technol. 30 065026
[18] Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003
[19] Zhang J H, Pan Y Y, Feng J Y, He Y N, Chu J H, Dong L F 2023 Plasma Sci. Technol. 25 025406
[20] Noma Y, Choi J H, Stauss S, Tomai T, Terashima K 2008 Appl. Phys. Express 1 046001
[21] Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501
[22] Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502
[23] Li Y H, Wang Y, Pan Y Y, Tian M, Zhang J H, Dong L F 2024 Phys. Plasmas 31 033502
[24] Zhu P, Dong L F, Yang J, Gao Y N, Wang Y J, Li B 2015 Phys. Plasmas 22 023507
[25] Dong L F, Shang J, Song Q, Fan W L, Ji Y F 2012 IEEE Trans. Plasma Sci. 40 1162
[26] Liu W B, Dong L F, Wang Y J, Zhang H, Pan Y Y 2016 Phys. Plasmas 23 082307
[27] Fan W L, Jia M M, Zhu P L, Liu C Y, Hou X H, Zhang J F, He Y F, Liu F C 2022 APL Photon. 7 116105
[28] Guo L T, Pan Y Y, Yu G L, Wang Z Y, Gao K Y, Fan W L, Dong L F 2023 Plasma Sci. Technol. 25 085501
[29] Demaude A, Baert K, Petitjean D, Zveny J, Goormaghtigh E, Hauffman T, Gordon M J, Reniers F 2022 Adv. Sci. 9 2200237
[30] Yang L Z, Liu Z W, Mao Z G, Li S, Chen Q 2017 Jpn. J. Appl. Phys. 56 01AC02
[31] Dong L F, Zhu P, Yang J, Li B 2015 High Volt.Eng. 41 2856 (in Chinese) [董丽芳,朱平,杨京,李犇 2015 高电压技术 41 2856]
[32] Bernecker B, Callegari T, Blanco S, Fournier R, Boeuf J P 2009 Eur. Phys. J. Appl. Phys. 47 22808
[33] Sun H Y, Dong L F, Liu F C, Mi Y L, Han R, Huang J Y, Liu B B, Hao F, Pan Y Y 2018 Phys. Plasmas 25 113507
[34] Yu G L, Dong L F, Dou Y Y, Mi Y L, Liu B B, Li C X, Pan Y Y 2019 Phys. Plasmas 26 023507
[35] Dong L F, Lu N, Shang J, Liu L, Li X C 2011 IEEE Trans. Plasma Sci. 39 2156
[36] Dong L F, Liu W B, Wang Y J, Zhang X P 2014 IEEE Trans. Plasma Sci. 42 2
[37] Duan X X, He F, Ouyang J T 2012 Plasma Sources Sci. Technol. 21 015008
[38] Li C X, Feng J Y, Wang SC, Li C, Ran J X, Pan Y Y, Dong L F 2024 Plasma Sci.Technol. 26 085401
[39] Yao J X, Miao J S, Li J X, Lian X Y, Ouyang J T 2023 Appl. Phys. Lett. 122 082905
[40] Ran J X, Luo H Y, Wang X X,2011 High Volt.Eng. 37 1486 (in Chinese) [冉俊霞,罗海云,王新新 2011 高电压技术 37 1486]
[41] Liu S H, Neiger M 2003 J. Phys. D:Appl. Phys. 36 3144
[42] Liu J, Yang Y, Nie L, Liu D, Lu X 2024 J. Phys. D: Appl. Phys. 57 275201
[43] Zhao N, Wu K Y, He X R, Chen J Y, Tan X, Wu J C, Ran J X, Jia P Y, Li X C 2022 J. Phys. D: Appl. Phys. 55 015203
[44] Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308
Metrics
- Abstract views: 43
- PDF Downloads: 1
- Cited By: 0