-
Classical discharge theory (Townsend theory and streamer theory) has limitations in explaining nanosecond pulsed gas discharge. In recent years, the research on nanosecond pulsed gas discharge theory based on the high-energy runaway electrons has attracted extensive attention. But so far, there have been few studies of the generation mechanism of runaway electrons in atmospheric-pressure-air nanosecond pulsed plate-to-plate discharge, which seriously hinders the application and development of nanosecond pulse discharge plasma. In this paper, a one-dimensional implicit particle-in-cell/Monte Carlo collision (PIC/MCC) model is developed to investigate the mechanism of runaway electron generation and breakdown in a 1 mm-long atmospheric-pressure-air gap between the plate electrode and plate electrode driven by a negative nanosecond pulse voltage with an amplitude of 20 kV. The results show that under the influence of space charge dynamic behavior, the electric field enhancement region appears between the plate electrode and plate electrode, so that electrons can satisfy the electron runaway criteria and behaves in the runaway mode. In addition, it is also observed that the pre-ionization effect of the runaway electrons in front of the discharge channel can cause the secondary electron avalanches. As the secondary electrons avalanche and the discharge channel continues to converge, the discharge is guided and accelerated, eventually leading to the breakdown of the air gap. This study further reveals the mechanism of nanosecond pulsed plate-plate discharge, expands the basic theory of nanosecond pulsed gas discharge, and opens up new opportunities for the application and development of nanosecond pulsed discharge plasma.
-
Keywords:
- nanosecond pulse discharge /
- runaway electron /
- electric field enhancement /
- pre-ionization
[1] Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina Jury F, Kim H H, Murphy A B, Schneider W F, Nozaki T, Hicks J C, Rousseau A, Thevenet F, Khacef A, Carreon M 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar
[2] Wang S, Yang D Z, Zhou R S, Zhou R W, Fang Z, Wang W C, Ostrikov K 2019 Plasma Process. Polym. 17 1900146Google Scholar
[3] Cai Y K, Lyu L, Lu X P 2021 High Volt. 6 1092Google Scholar
[4] Bekeschus S, Favia P, Robert E, Woedtke T V 2019 Plasma Process. Polym. 16 1800033Google Scholar
[5] Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021 High Volt. 6 665Google Scholar
[6] Tang J F, Tang M, Zhou D S, Kang P T, Zhu X M, Zhang C H 2019 Plasma Sci. Technol. 21 044001Google Scholar
[7] Zhang S, Wang W C, Yang D Z, Yuan H, Zhao Z L, Sun H, Shao T 2019 Spectrochim. Acta A Mol. Biomol. Spectrosc. 207 294Google Scholar
[8] Shao T, Tarasenko V F, Zhang C, Baksht E K, Zhang D, Erofeev M V, Ren C, Shutko Y V, Yan P 2013 J. Appl. Phys. 113 093301Google Scholar
[9] Shkurenkov I, Burnette D, Lempert W R, Adamovich I V 2014 Plasma Sources Sci. Technol. 23 065003Google Scholar
[10] Yatom S, Gleizer J Z, Levko D, Vekselman V, Gurovich V, Hupf E, Hadas Y, Krasik Y E 2011 Europhys. Lett. 96 65001Google Scholar
[11] Shao T, Wang R X, Zhang C, Yan P 2018 High Volt. 3 14Google Scholar
[12] Kunhardt E E, Byszewski W W 1980 Phys. Rev. A 21 2069Google Scholar
[13] Zhang C, Gu J W, Wang R X, Ma H, Yan P, Shao T 2016 Laser Part. Beams 34 43Google Scholar
[14] Frankel S, Highland V, Sloan T, Dyck O V, Wales W 1966 Nucl. Instrum. Method 44 345Google Scholar
[15] Bratchikov V B, Gagarinov K A, Kostyrya I D, Tarasenko V F, Tkachev A N, Yakovlenko S I 2007 Tech. Phys. 52 856Google Scholar
[16] Byszewski W W, Reinhold G 1982 Phys. Rev. A 26 2826Google Scholar
[17] Kostyrya I D, Tarasenko V F 2015 Plasma Phys. Rep. 41 269Google Scholar
[18] Tarasenko V F 2020 Plasma Sources Sci. Technol. 29 034001Google Scholar
[19] Beloplotov D V, Tarasenko V F, Shklyaev V A, Sorokin D A 2021 J. Phys. D: Appl. Phys. 54 304001Google Scholar
[20] Levko D 2019 J. Appl. Phys. 126 083303Google Scholar
[21] Babaeva N Y, Zhang C, Qiu J T, Hou X M, Tarasenko V F, Shao T 2017 Plasma Sources Sci. Technol. 26 085008Google Scholar
[22] Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2015 Europhys. Lett. 112 15001Google Scholar
[23] Huang B D, Zhang C, Ren C H, Shao T 2022 Plasma Sources Sci. Technol. 31 114002Google Scholar
[24] Ivanov S N 2013 J. Phys. D: Appl. Phys. 46 285201Google Scholar
[25] Levko D 2012 J. Appl. Phys. 111 083303Google Scholar
[26] Langdon A B, Cohen B I, Friedman A 1983 J. Comput. Phys. 51 107Google Scholar
[27] Ivanov S N, Lisenkov V V 2018 J. Appl. Phys. 124 103304Google Scholar
[28] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp69–70
[29] Wang H Y, Jiang W, Wang Y N 2010 Plasma Sources Sci. Technol. 19 045023Google Scholar
[30] Friedman A 1990 J. Comput. Phys. 90 292Google Scholar
[31] Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971Google Scholar
[32] Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar
[33] Lxcat Program of IST-Lisbon Database https://lxcat.net/ [2022-10-10]
[34] Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013Google Scholar
[35] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar
[36] Li Y T, Fu Y Y, Liu Z G, Li H D, Wang P, Luo H Y, Zou X B, Wang X X 2022 Plasma Sources Sci. Technol. 31 045027Google Scholar
[37] Mesyats G A, Yalandin M I, Zubarev N M, Sadykova A G, Sharypov K A 2020 Appl. Phys. Lett. 116 063501Google Scholar
[38] Tarasenko V F, Yakovlenko S I 2004 Physics-Uspekhi 47 887Google Scholar
[39] 章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 638 085208Google Scholar
Zhang C, Ma H, Shao T, Xie Q, Yang W J, Yan P 2014 Acta Phys. Sin. 638 085208Google Scholar
[40] Zubarev N M, Ivanov S N 2017 Plasma Phys. Rep. 44 445Google Scholar
[41] Naidis G V, Tarasenko V F, Babaeva N Y, Lomaev M I 2018 Plasma Sources Sci. Technol. 27 013001Google Scholar
[42] Shao T, Tarasenko V F, Zhang C, Kostyrya I D, Jiang H, Xu R, Rybka D V, Yan P 2011 Appl. Phys. Express 4 066001Google Scholar
[43] Askaryan G A 1975 Proc. (Tr.) P. N. Lebedev Phys. Inst. (USSR) (Engl. Transl.) 66 66
[44] Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2017 Russ. Phys. J. 60 1425Google Scholar
-
表 1 模型中的化学反应
Table 1. Chemical reactions in the model.
序号 反应方程式 能量损耗阈值/eV 1 e+N2 → e +N2 0 2 e +O2 → e +O2 0 3 e +N2 → e +N2 A(3$ {{\Sigma }}_{\rm{u}}^+ $) 6.169 4 e +N2 → e +N2 B(3$ {{\Pi }} $g) 7.353 5 e +N2 → e +N2 W(3$ \Delta $u) 7.362 6 e +N2 → e +N2 B'(3$ {{\Sigma }}_{\rm{u}}^- $) 8.165 7 e +N2 → e +N2 a'(1$ {{\Sigma }}_{\rm{u}}^+ $) 8.399 8 e +N2 → e +N2 a(1$ \Pi $g) 8.549 9 e +N2 → e +N2 w(1$ \Delta $u) 8.890 10 e +N2 → e +N+N 9.754 11 e +N2 → e +N2 C(3$ \Pi $u) 11.032 12 e +O2 → e +O2 a(1$ \Delta $g) 0.977 13 e +O2 → e +O2 b(1$ \Sigma _{\rm{g}}^+$) 1.627 14 e +O2 → e + O + O 5.58 15 e +O2 → e +O + O1D 8.4 16 e +O2 → e + O1D + O1D 9.97 17 e +N2 → 2e + N${}_2^+ $ 15.58 18 e +O2 → 2e + O${}_2^+ $ 12.06 19 e +O2 → O${}_2^- $ — -
[1] Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina Jury F, Kim H H, Murphy A B, Schneider W F, Nozaki T, Hicks J C, Rousseau A, Thevenet F, Khacef A, Carreon M 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar
[2] Wang S, Yang D Z, Zhou R S, Zhou R W, Fang Z, Wang W C, Ostrikov K 2019 Plasma Process. Polym. 17 1900146Google Scholar
[3] Cai Y K, Lyu L, Lu X P 2021 High Volt. 6 1092Google Scholar
[4] Bekeschus S, Favia P, Robert E, Woedtke T V 2019 Plasma Process. Polym. 16 1800033Google Scholar
[5] Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021 High Volt. 6 665Google Scholar
[6] Tang J F, Tang M, Zhou D S, Kang P T, Zhu X M, Zhang C H 2019 Plasma Sci. Technol. 21 044001Google Scholar
[7] Zhang S, Wang W C, Yang D Z, Yuan H, Zhao Z L, Sun H, Shao T 2019 Spectrochim. Acta A Mol. Biomol. Spectrosc. 207 294Google Scholar
[8] Shao T, Tarasenko V F, Zhang C, Baksht E K, Zhang D, Erofeev M V, Ren C, Shutko Y V, Yan P 2013 J. Appl. Phys. 113 093301Google Scholar
[9] Shkurenkov I, Burnette D, Lempert W R, Adamovich I V 2014 Plasma Sources Sci. Technol. 23 065003Google Scholar
[10] Yatom S, Gleizer J Z, Levko D, Vekselman V, Gurovich V, Hupf E, Hadas Y, Krasik Y E 2011 Europhys. Lett. 96 65001Google Scholar
[11] Shao T, Wang R X, Zhang C, Yan P 2018 High Volt. 3 14Google Scholar
[12] Kunhardt E E, Byszewski W W 1980 Phys. Rev. A 21 2069Google Scholar
[13] Zhang C, Gu J W, Wang R X, Ma H, Yan P, Shao T 2016 Laser Part. Beams 34 43Google Scholar
[14] Frankel S, Highland V, Sloan T, Dyck O V, Wales W 1966 Nucl. Instrum. Method 44 345Google Scholar
[15] Bratchikov V B, Gagarinov K A, Kostyrya I D, Tarasenko V F, Tkachev A N, Yakovlenko S I 2007 Tech. Phys. 52 856Google Scholar
[16] Byszewski W W, Reinhold G 1982 Phys. Rev. A 26 2826Google Scholar
[17] Kostyrya I D, Tarasenko V F 2015 Plasma Phys. Rep. 41 269Google Scholar
[18] Tarasenko V F 2020 Plasma Sources Sci. Technol. 29 034001Google Scholar
[19] Beloplotov D V, Tarasenko V F, Shklyaev V A, Sorokin D A 2021 J. Phys. D: Appl. Phys. 54 304001Google Scholar
[20] Levko D 2019 J. Appl. Phys. 126 083303Google Scholar
[21] Babaeva N Y, Zhang C, Qiu J T, Hou X M, Tarasenko V F, Shao T 2017 Plasma Sources Sci. Technol. 26 085008Google Scholar
[22] Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2015 Europhys. Lett. 112 15001Google Scholar
[23] Huang B D, Zhang C, Ren C H, Shao T 2022 Plasma Sources Sci. Technol. 31 114002Google Scholar
[24] Ivanov S N 2013 J. Phys. D: Appl. Phys. 46 285201Google Scholar
[25] Levko D 2012 J. Appl. Phys. 111 083303Google Scholar
[26] Langdon A B, Cohen B I, Friedman A 1983 J. Comput. Phys. 51 107Google Scholar
[27] Ivanov S N, Lisenkov V V 2018 J. Appl. Phys. 124 103304Google Scholar
[28] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp69–70
[29] Wang H Y, Jiang W, Wang Y N 2010 Plasma Sources Sci. Technol. 19 045023Google Scholar
[30] Friedman A 1990 J. Comput. Phys. 90 292Google Scholar
[31] Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971Google Scholar
[32] Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar
[33] Lxcat Program of IST-Lisbon Database https://lxcat.net/ [2022-10-10]
[34] Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013Google Scholar
[35] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar
[36] Li Y T, Fu Y Y, Liu Z G, Li H D, Wang P, Luo H Y, Zou X B, Wang X X 2022 Plasma Sources Sci. Technol. 31 045027Google Scholar
[37] Mesyats G A, Yalandin M I, Zubarev N M, Sadykova A G, Sharypov K A 2020 Appl. Phys. Lett. 116 063501Google Scholar
[38] Tarasenko V F, Yakovlenko S I 2004 Physics-Uspekhi 47 887Google Scholar
[39] 章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 638 085208Google Scholar
Zhang C, Ma H, Shao T, Xie Q, Yang W J, Yan P 2014 Acta Phys. Sin. 638 085208Google Scholar
[40] Zubarev N M, Ivanov S N 2017 Plasma Phys. Rep. 44 445Google Scholar
[41] Naidis G V, Tarasenko V F, Babaeva N Y, Lomaev M I 2018 Plasma Sources Sci. Technol. 27 013001Google Scholar
[42] Shao T, Tarasenko V F, Zhang C, Kostyrya I D, Jiang H, Xu R, Rybka D V, Yan P 2011 Appl. Phys. Express 4 066001Google Scholar
[43] Askaryan G A 1975 Proc. (Tr.) P. N. Lebedev Phys. Inst. (USSR) (Engl. Transl.) 66 66
[44] Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2017 Russ. Phys. J. 60 1425Google Scholar
Catalog
Metrics
- Abstract views: 3435
- PDF Downloads: 93
- Cited By: 0